All the vulnerabilities related to the version 17.1.0 of the package
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces() in index.js because the pattern .* will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.
Uncontrolled resource consumption in braces
The NPM package braces fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js, if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
tschaub gh-pages vulnerable to prototype pollution
Prototype pollution vulnerability in tschaub gh-pages via the partial variable in util.js.
Server-Side Request Forgery in Request
The request package through 2.88.2 for Node.js and the @cypress/request package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random() to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici by parrot409 -- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random() is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized.
Regular Expression Denial of Service in trim
All versions of package trim lower than 0.0.3 are vulnerable to Regular Expression Denial of Service (ReDoS) via trim().
Cross-Site Scripting in serialize-javascript
Versions of serialize-javascript prior to 2.1.1 are vulnerable to Cross-Site Scripting (XSS). The package fails to sanitize serialized regular expressions. This vulnerability does not affect Node.js applications.
Upgrade to version 2.1.1 or later.
Insecure serialization leading to RCE in serialize-javascript
serialize-javascript prior to 3.1.0 allows remote attackers to inject arbitrary code via the function "deleteFunctions" within "index.js".
An object such as {"foo": /1"/, "bar": "a\"@__R-<UID>-0__@"} was serialized as {"foo": /1"/, "bar": "a\/1"/}, which allows an attacker to escape the bar key. This requires the attacker to control the values of both foo and bar and guess the value of <UID>. The UID has a keyspace of approximately 4 billion making it a realistic network attack.
Inefficient Regular Expression Complexity in nth-check
There is a Regular Expression Denial of Service (ReDoS) vulnerability in nth-check that causes a denial of service when parsing crafted invalid CSS nth-checks.
The ReDoS vulnerabilities of the regex are mainly due to the sub-pattern \s*(?:([+-]?)\s*(\d+))? with quantified overlapping adjacency and can be exploited with the following code.
Proof of Concept
// PoC.js
var nthCheck = require("nth-check")
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = '2n' + ' '.repeat(i*10000)+"!";
try {
nthCheck.parse(attack_str)
}
catch(err) {
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
The Output
attack_str.length: 10003: 174 ms
attack_str.length: 20003: 1427 ms
attack_str.length: 30003: 2602 ms
attack_str.length: 40003: 4378 ms
attack_str.length: 50003: 7473 ms