All the vulnerabilities related to the version 1.2.0 of the package
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Regular Expression Denial of Service (ReDoS) in lodash
lodash prior to 4.7.11 is affected by: CWE-400: Uncontrolled Resource Consumption. The impact is: Denial of service. The component is: Date handler. The attack vector is: Attacker provides very long strings, which the library attempts to match using a regular expression. The fixed version is: 4.7.11.
Regular Expression Denial of Service (ReDoS) in lodash
All versions of package lodash prior to 4.17.21 are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
Steps to reproduce (provided by reporter Liyuan Chen):
var lo = require('lodash');
function build_blank(n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000) var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0);
var time1 = Date.now();
lo.toNumber(s) var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1);
var time2 = Date.now();
lo.trimEnd(s);
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2);
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
superagent vulnerable to zip bomb attacks
Affected versions of superagent
do not check the post-decompression size of ZIP compressed HTTP responses prior to decompressing. This results in the package being vulnerable to a ZIP bomb attack, where an extremely small ZIP file becomes many orders of magnitude larger when decompressed.
This may result in unrestrained CPU/Memory/Disk consumption, causing a denial of service condition.
Update to version 3.7.0 or later.
Prototype Pollution Protection Bypass in qs
Affected version of qs
are vulnerable to Prototype Pollution because it is possible to bypass the protection. The qs.parse
function fails to properly prevent an object's prototype to be altered when parsing arbitrary input. Input containing [
or ]
may bypass the prototype pollution protection and alter the Object prototype. This allows attackers to override properties that will exist in all objects, which may lead to Denial of Service or Remote Code Execution in specific circumstances.
Upgrade to 6.0.4, 6.1.2, 6.2.3, 6.3.2 or later.
qs vulnerable to Prototype Pollution
qs before 6.10.3 allows attackers to cause a Node process hang because an __ proto__
key can be used. In many typical web framework use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000
. The fix was backported to qs 6.9.7, 6.8.3, 6.7.3, 6.6.1, 6.5.3, 6.4.1, 6.3.3, and 6.2.4.
mime Regular Expression Denial of Service when MIME lookup performed on untrusted user input
Affected versions of mime
are vulnerable to regular expression denial of service when a mime lookup is performed on untrusted user input.
Update to version 2.0.3 or later.
Prototype Pollution in extend
Versions of extend
prior to 3.0.2 (for 3.x) and 2.0.2 (for 2.x) are vulnerable to Prototype Pollution. The extend()
function allows attackers to modify the prototype of Object causing the addition or modification of an existing property that will exist on all objects.
If you're using extend
3.x upgrade to 3.0.2 or later.
If you're using extend
2.x upgrade to 2.0.2 or later.
cookiejar Regular Expression Denial of Service via Cookie.parse function
Versions of the package cookiejar before 2.1.4 are vulnerable to Regular Expression Denial of Service (ReDoS) via the Cookie.parse
function and other aspects of the API, which use an insecure regular expression for parsing cookie values. Applications could be stalled for extended periods of time if untrusted input is passed to cookie values or attempted to parse from request headers.
Proof of concept:
ts\nconst { CookieJar } = require("cookiejar");
const jar = new CookieJar();
const start = performance.now();
const attack = "a" + "t".repeat(50_000);
jar.setCookie(attack);
console.log(`CookieJar.setCookie(): ${performance.now() - start}ms`);
CookieJar.setCookie(): 2963.214399999939ms
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
Code Injection in pac-resolver
This affects the package pac-resolver before 5.0.0. This can occur when used with untrusted input, due to unsafe PAC file handling. NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency written by the same maintainer.
Improper parsing of octal bytes in netmask
Improper input validation of octal strings in netmask npm package v1.0.6 and below allows unauthenticated remote attackers to perform indeterminate SSRF, RFI, and LFI attacks on many of the dependent packages. A remote unauthenticated attacker can bypass packages relying on netmask to filter IPs and reach critical VPN or LAN hosts.
:exclamation: NOTE: The fix for this issue was incomplete. A subsequent fix was made in version 2.0.1
which was assigned CVE-2021-29418 / GHSA-pch5-whg9-qr2r. For complete protection from this vulnerability an upgrade to version 2.0.1 or later is recommended.
netmask npm package mishandles octal input data
The netmask package before 2.0.1 for Node.js mishandles certain unexpected characters in an IP address string, such as an octal digit of 9. This (in some situations) allows attackers to bypass access control that is based on IP addresses. NOTE: this issue exists because of an incomplete fix for CVE-2021-28918.
Code Injection in pac-resolver
This affects the package pac-resolver before 5.0.0. This can occur when used with untrusted input, due to unsafe PAC file handling. NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency written by the same maintainer.
Resource Exhaustion Denial of Service in http-proxy-agent
A flaw was found in http-proxy-agent, prior to version 2.1.0. It was discovered http-proxy-agent passes an auth option to the Buffer constructor without proper sanitization. This could result in a Denial of Service through the usage of all available CPU resources and data exposure through an uninitialized memory leak in setups where an attacker could submit typed input to the auth parameter.
Denial of Service in http-proxy-agent
Versions of http-proxy-agent
before 2.1.0 are vulnerable to denial of service and uninitialized memory leak when unsanitized options are passed to Buffer
. An attacker may leverage these unsanitized options to consume system resources.
Update to version 2.1.0 or later.
Denial of Service in https-proxy-agent
Versions of https-proxy-agent
before 2.2.0 are vulnerable to denial of service. This is due to unsanitized options (proxy.auth) being passed to Buffer()
.
Update to version 2.2.0 or later.
Machine-In-The-Middle in https-proxy-agent
Versions of https-proxy-agent
prior to 2.2.3 are vulnerable to Machine-In-The-Middle. The package fails to enforce TLS on the socket if the proxy server responds the to the request with a HTTP status different than 200. This allows an attacker with access to the proxy server to intercept unencrypted communications, which may include sensitive information such as credentials.
Upgrade to version 3.0.0 or 2.2.3.
ip SSRF improper categorization in isPublic
The ip package through 2.0.1 for Node.js might allow SSRF because some IP addresses (such as 127.1, 01200034567, 012.1.2.3, 000:0:0000::01, and ::fFFf:127.0.0.1) are improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2023-42282.
debug Inefficient Regular Expression Complexity vulnerability
A vulnerability classified as problematic has been found in debug-js debug up to 3.0.x. This affects the function useColors of the file src/node.js. The manipulation of the argument str leads to inefficient regular expression complexity. Upgrading to version 3.1.0 is able to address this issue. The name of the patch is c38a0166c266a679c8de012d4eaccec3f944e685. It is recommended to upgrade the affected component. The identifier VDB-217665 was assigned to this vulnerability. The patch has been backported to the 2.6.x branch in version 2.6.9.
Regular Expression Denial of Service in debug
Affected versions of debug
are vulnerable to regular expression denial of service when untrusted user input is passed into the o
formatter.
As it takes 50,000 characters to block the event loop for 2 seconds, this issue is a low severity issue.
This was later re-introduced in version v3.2.0, and then repatched in versions 3.2.7 and 4.3.1.
Version 2.x.x: Update to version 2.6.9 or later. Version 3.1.x: Update to version 3.1.0 or later. Version 3.2.x: Update to version 3.2.7 or later. Version 4.x.x: Update to version 4.3.1 or later.