Browserify version 3.44.1 is a minor patch release following closely on the heels of version 3.44.0, both iterations of a tool designed to bring Node.js-style require() statements to the browser. Primarily aimed at developers comfortable with the Node.js module system, Browserify allows them to write modular JavaScript code that can run client-side. The core purpose remains consistent across these versions: bundling JavaScript files and their dependencies for browser deployment.
A key focus when adopting either 3.44.0 or 3.44.1 would be leveraging the extensive ecosystem of Node.js modules directly in your browser-based projects. This avoids having to rewrite existing code or maintain separate module systems for server and client environments. Key dependencies like module-deps, browser-pack, and insert-module-globals (all with specific version constraints) work together under the hood to resolve dependencies, package them efficiently, and provide crucial global variables to emulate a Node.js environment within the browser.
While the dependency lists appear identical between the two provided versions, indicating a potential bug fix or very minor tweak distinguishing them, it's often worth checking the changelog for specifics. These minor versions frequently address edge-case bugs or compatibility issues discovered rapidly after a larger release, ensuring stability. Developers should prioritize the latest patch (3.44.1) unless facing specific regressions to take advantage of the most current bug fixes, improving the reliability of their build process when using Browserify to prepare code for browser execution. Remember to check if any of your dependencies are affected by the update.
All the vulnerabilities related to the version 3.44.1 of the package
Regular Expression Denial of Service in uglify-js
Versions of uglify-js
prior to 2.6.0 are affected by a regular expression denial of service vulnerability when malicious inputs are passed into the parse()
method.
var u = require('uglify-js');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
u.parse("var a = " + genstr(process.argv[2], "1") + ".1ee7;");
$ time node test.js 10000
real 0m1.091s
user 0m1.047s
sys 0m0.039s
$ time node test.js 80000
real 0m6.486s
user 0m6.229s
sys 0m0.094s
Update to version 2.6.0 or later.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Potential Command Injection in shell-quote
Affected versions of shell-quote
do not properly escape command line arguments, which may result in command injection if the library is used to escape user input destined for use as command line arguments.
The following characters are not escaped properly: >
,;
,{
,}
Bash has a neat but not well known feature known as "Bash Brace Expansion", wherein a sub-command can be executed without spaces by running it between a set of {}
and using the ,
instead of
to seperate arguments. Because of this, full command injection is possible even though it was initially thought to be impossible.
const quote = require('shell-quote').quote;
console.log(quote(['a;{echo,test,123,234}']));
// Actual "a;{echo,test,123,234}"
// Expected "a\;\{echo,test,123,234\}"
// Functional Equivalent "a; echo 'test' '123' '1234'"
Update to version 1.6.1 or later.
Improper Neutralization of Special Elements used in a Command in Shell-quote
The shell-quote package before 1.7.3 for Node.js allows command injection. An attacker can inject unescaped shell metacharacters through a regex designed to support Windows drive letters. If the output of this package is passed to a real shell as a quoted argument to a command with exec()
, an attacker can inject arbitrary commands. This is because the Windows drive letter regex character class is [A-z]
instead of the correct [A-Za-z]
. Several shell metacharacters exist in the space between capital letter Z and lower case letter a, such as the backtick character.