Browserify is a powerful tool for developers, enabling the use of Node.js-style modules in the browser. Comparing versions 4.1.9 and 4.1.10, we observe subtle shifts that can impact a project's dependency stability and functionality. Both versions share the core aim of providing browser-side require() functionality but differ in their dependency resolution for browser-resolve. The earlier version, 4.1.9, specifies browser-resolve as ~1.2.1, while 4.1.10 upgrades this to ^1.3.0. This change, seemingly small, signifies a potential update to the browser module resolution algorithm, possibly introducing new features or bug fixes for improved module loading.
Developers should be aware of this dependency update because it could affect how modules are located and bundled. The caret (^) in ^1.3.0 indicates that compatible updates within the 1.x.x range are acceptable, potentially including minor or patch releases. This nuanced alteration to the dependency tree emphasizes the importance of carefully testing upgrades to ensure consistent behaviour, especially when dealing with complex module structures. While dependencies remain consistent, this dependency change is critical because can introduce changes in the module resolution process, potentially altering the behavior of your browserified application. Always test thoroughly.
All the vulnerabilities related to the version 4.1.10 of the package
Regular Expression Denial of Service in uglify-js
Versions of uglify-js
prior to 2.6.0 are affected by a regular expression denial of service vulnerability when malicious inputs are passed into the parse()
method.
var u = require('uglify-js');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
u.parse("var a = " + genstr(process.argv[2], "1") + ".1ee7;");
$ time node test.js 10000
real 0m1.091s
user 0m1.047s
sys 0m0.039s
$ time node test.js 80000
real 0m6.486s
user 0m6.229s
sys 0m0.094s
Update to version 2.6.0 or later.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Potential Command Injection in shell-quote
Affected versions of shell-quote
do not properly escape command line arguments, which may result in command injection if the library is used to escape user input destined for use as command line arguments.
The following characters are not escaped properly: >
,;
,{
,}
Bash has a neat but not well known feature known as "Bash Brace Expansion", wherein a sub-command can be executed without spaces by running it between a set of {}
and using the ,
instead of
to seperate arguments. Because of this, full command injection is possible even though it was initially thought to be impossible.
const quote = require('shell-quote').quote;
console.log(quote(['a;{echo,test,123,234}']));
// Actual "a;{echo,test,123,234}"
// Expected "a\;\{echo,test,123,234\}"
// Functional Equivalent "a; echo 'test' '123' '1234'"
Update to version 1.6.1 or later.