All the vulnerabilities related to the version 0.6.13 of the package
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.
Inefficient Regular Expression Complexity in nth-check
There is a Regular Expression Denial of Service (ReDoS) vulnerability in nth-check that causes a denial of service when parsing crafted invalid CSS nth-checks.
The ReDoS vulnerabilities of the regex are mainly due to the sub-pattern \s*(?:([+-]?)\s*(\d+))?
with quantified overlapping adjacency and can be exploited with the following code.
Proof of Concept
// PoC.js
var nthCheck = require("nth-check")
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = '2n' + ' '.repeat(i*10000)+"!";
try {
nthCheck.parse(attack_str)
}
catch(err) {
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
The Output
attack_str.length: 10003: 174 ms
attack_str.length: 20003: 1427 ms
attack_str.length: 30003: 2602 ms
attack_str.length: 40003: 4378 ms
attack_str.length: 50003: 7473 ms
debug Inefficient Regular Expression Complexity vulnerability
A vulnerability classified as problematic has been found in debug-js debug up to 3.0.x. This affects the function useColors of the file src/node.js. The manipulation of the argument str leads to inefficient regular expression complexity. Upgrading to version 3.1.0 is able to address this issue. The name of the patch is c38a0166c266a679c8de012d4eaccec3f944e685. It is recommended to upgrade the affected component. The identifier VDB-217665 was assigned to this vulnerability. The patch has been backported to the 2.6.x branch in version 2.6.9.
Regular Expression Denial of Service in debug
Affected versions of debug
are vulnerable to regular expression denial of service when untrusted user input is passed into the o
formatter.
As it takes 50,000 characters to block the event loop for 2 seconds, this issue is a low severity issue.
This was later re-introduced in version v3.2.0, and then repatched in versions 3.2.7 and 4.3.1.
Version 2.x.x: Update to version 2.6.9 or later. Version 3.1.x: Update to version 3.1.0 or later. Version 3.2.x: Update to version 3.2.7 or later. Version 4.x.x: Update to version 4.3.1 or later.
Vercel ms Inefficient Regular Expression Complexity vulnerability
A vulnerability, which was classified as problematic, has been found in vercel ms up to 1.x. This issue affects the function parse of the file index.js. The manipulation of the argument str leads to inefficient regular expression complexity. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 2.0.0 is able to address this issue. The name of the patch is caae2988ba2a37765d055c4eee63d383320ee662. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-217451.
ReDOS vulnerabities: multiple grammars
The Regular expression Denial of Service (ReDoS) is a Denial of Service attack, that exploits the fact that most Regular Expression implementations may reach extreme situations that cause them to work very slowly (exponentially related to input size). An attacker can then cause a program using a Regular Expression to enter these extreme situations and then hang for a very long time.
If are you are using Highlight.js to highlight user-provided data you are possibly vulnerable. On the client-side (in a browser or Electron environment) risks could include lengthy freezes or crashes... On the server-side infinite freezes could occur... effectively preventing users from accessing your app or service (ie, Denial of Service).
This is an issue with grammars shipped with the parser (and potentially 3rd party grammars also), not the parser itself. If you are using Highlight.js with any of the following grammars you are vulnerable. If you are using highlightAuto
to detect the language (and have any of these grammars registered) you are vulnerable. Exponential grammars (C, Perl, JavaScript) are auto-registered when using the common grammar subset/library require('highlight.js/lib/common')
as of 10.4.0 - see https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@10.4.0/build/highlight.js
All versions prior to 10.4.1 are vulnerable, including version 9.18.5.
Grammars with exponential backtracking issues:
And of course any aliases of those languages have the same issue. ie: hpp
is no safer than cpp
.
Grammars with polynomial backtracking issues:
And again: any aliases of those languages have the same issue. ie: ruby
and rb
share the same ruby issues.
If you have any questions or comments about this advisory:
Prototype Pollution in highlight.js
Affected versions of this package are vulnerable to Prototype Pollution. A malicious HTML code block can be crafted that will result in prototype pollution of the base object's prototype during highlighting. If you allow users to insert custom HTML code blocks into your page/app via parsing Markdown code blocks (or similar) and do not filter the language names the user can provide you may be vulnerable.
The pollution should just be harmless data but this can cause problems for applications not expecting these properties to exist and can result in strange behavior or application crashes, i.e. a potential DOS vector.
If your website or application does not render user provided data it should be unaffected.
Versions 9.18.2 and 10.1.2 and newer include fixes for this vulnerability. If you are using version 7 or 8 you are encouraged to upgrade to a newer release.
Manually patch your library to create null objects for both languages
and aliases
:
const HLJS = function(hljs) {
// ...
var languages = Object.create(null);
var aliases = Object.create(null);
Filter the language names that users are allowed to inject into your HTML to guarantee they are valid.
If you have any questions or comments about this advisory:
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick
, set
, setWith
, update
, updateWith
, and zipObjectDeep
allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Uncontrolled Resource Consumption in markdown-it
Special patterns with length > 50K chars can slow down parser significantly.
const md = require('markdown-it')();
md.render(`x ${' '.repeat(150000)} x \nx`);
Upgrade to v12.3.2+
No.
Fix + test sample: https://github.com/markdown-it/markdown-it/commit/ffc49ab46b5b751cd2be0aabb146f2ef84986101
markdown-it-decorate vulnerable to cross-site scripting (XSS)
markdown-it-decorate adds attributes, IDs and classes to Markdown, and the most recent version 1.2.2 was published in 2017. All versions are currently vulnerable to cross-site scripting (XSS) and there is no fixed version at this time
Inefficient Regular Expression Complexity in marked
What kind of vulnerability is it?
Denial of service.
The regular expression inline.reflinkSearch
may cause catastrophic backtracking against some strings.
PoC is the following.
import * as marked from 'marked';
console.log(marked.parse(`[x]: x
\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](`));
Who is impacted?
Anyone who runs untrusted markdown through marked and does not use a worker with a time limit.
Has the problem been patched?
Yes
What versions should users upgrade to?
4.0.10
Is there a way for users to fix or remediate the vulnerability without upgrading?
Do not run untrusted markdown through marked or run marked on a worker thread and set a reasonable time limit to prevent draining resources.
Are there any links users can visit to find out more?
If you have any questions or comments about this advisory:
Marked vulnerable to XSS from data URIs
marked version 0.3.6 and earlier is vulnerable to an XSS attack in the data: URI parser.
Marked allows Regular Expression Denial of Service (ReDoS) attacks
Marked prior to version 0.3.17 is vulnerable to a Regular Expression Denial of Service (ReDoS) attack due to catastrophic backtracking in several regular expressions used for parsing HTML tags and markdown links. An attacker can exploit this vulnerability by providing specially crafted markdown input, such as deeply nested or repetitively structured brackets or tag attributes, which cause the parser to hang and lead to a Denial of Service.
Inefficient Regular Expression Complexity in marked
What kind of vulnerability is it?
Denial of service.
The regular expression block.def
may cause catastrophic backtracking against some strings.
PoC is the following.
import * as marked from "marked";
marked.parse(`[x]:${' '.repeat(1500)}x ${' '.repeat(1500)} x`);
Who is impacted?
Anyone who runs untrusted markdown through marked and does not use a worker with a time limit.
Has the problem been patched?
Yes
What versions should users upgrade to?
4.0.10
Is there a way for users to fix or remediate the vulnerability without upgrading?
Do not run untrusted markdown through marked or run marked on a worker thread and set a reasonable time limit to prevent draining resources.
Are there any links users can visit to find out more?
If you have any questions or comments about this advisory:
Sanitization bypass using HTML Entities in marked
Affected versions of marked
are susceptible to a cross-site scripting vulnerability in link components when sanitize:true
is configured.
This flaw exists because link URIs containing HTML entities get processed in an abnormal manner. Any HTML Entities get parsed on a best-effort basis and included in the resulting link, while if that parsing fails that character is omitted.
For example:
A link URI such as
javascript֍ocument;alert(1)
Renders a valid link that when clicked will execute alert(1)
.
Update to version 0.3.6 or later.
Regular Expression Denial of Service in marked
Affected versions of marked
are vulnerable to a regular expression denial of service.
The amplification in this vulnerability is significant, with 1,000 characters resulting in the event loop being blocked for around 6 seconds.
Update to version 0.3.9 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.