All the vulnerabilities related to the version 0.3.2 of the package
debug Inefficient Regular Expression Complexity vulnerability
A vulnerability classified as problematic has been found in debug-js debug up to 3.0.x. This affects the function useColors of the file src/node.js. The manipulation of the argument str leads to inefficient regular expression complexity. Upgrading to version 3.1.0 is able to address this issue. The name of the patch is c38a0166c266a679c8de012d4eaccec3f944e685. It is recommended to upgrade the affected component. The identifier VDB-217665 was assigned to this vulnerability. The patch has been backported to the 2.6.x branch in version 2.6.9.
Regular Expression Denial of Service in debug
Affected versions of debug
are vulnerable to regular expression denial of service when untrusted user input is passed into the o
formatter.
As it takes 50,000 characters to block the event loop for 2 seconds, this issue is a low severity issue.
This was later re-introduced in version v3.2.0, and then repatched in versions 3.2.7 and 4.3.1.
Version 2.x.x: Update to version 2.6.9 or later. Version 3.1.x: Update to version 3.1.0 or later. Version 3.2.x: Update to version 3.2.7 or later. Version 4.x.x: Update to version 4.3.1 or later.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.
semver vulnerable to Regular Expression Denial of Service
Versions of the package semver before 7.5.2 on the 7.x branch, before 6.3.1 on the 6.x branch, and all other versions before 5.7.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
Regular Expression Denial of Service in semver
Versions 4.3.1 and earlier of semver
are affected by a regular expression denial of service vulnerability when extremely long version strings are parsed.
Update to version 4.3.2 or later
tar-fs can extract outside the specified dir with a specific tarball
v3.0.8, v2.1.2, v1.16.4 and below
Has been patched in 3.0.9, 2.1.3, and 1.16.5
You can use the ignore option to ignore non files/directories.
ignore (_, header) {
// pass files & directories, ignore e.g. symlinks
return header.type !== 'file' && header.type !== 'directory'
}
Thank you Caleb Brown from Google Open Source Security Team for reporting this in detail.
tar-fs Vulnerable to Link Following and Path Traversal via Extracting a Crafted tar File
An Improper Link Resolution Before File Access ("Link Following") and Improper Limitation of a Pathname to a Restricted Directory ("Path Traversal"). This vulnerability occurs when extracting a maliciously crafted tar file, which can result in unauthorized file writes or overwrites outside the intended extraction directory. The issue is associated with index.js in the tar-fs package.
This issue affects tar-fs: from 0.0.0 before 1.16.4, from 2.0.0 before 2.1.2, from 3.0.0 before 3.0.7.
// Create a writable stream to extract the tar content
const extractStream = tarfs.extract('/', {
// We can ignore the file type checks to allow the extraction of the malicious file
ignore: (name) => false,
});
// Create a tar stream
const tarStream = tarfs.pack().on('error', (err) => {
throw err;
});
// Append the malicious entry to the tar stream
tarStream.entry({ name: '/flag.txt', mode: 0o644 }, Buffer.from('This is a flag!'));
// Finalize the tar stream
tarStream.finalize();
// Pipe the tar stream into the extract stream
tarStream.pipe(extractStream);
tar-fs has a symlink validation bypass if destination directory is predictable with a specific tarball
v3.1.0, v2.1.3, v1.16.5 and below
Has been patched in 3.1.1, 2.1.4, and 1.16.6
You can use the ignore option to ignore non files/directories.
ignore (_, header) {
// pass files & directories, ignore e.g. symlinks
return header.type !== 'file' && header.type !== 'directory'
}
Reported by: Mapta / BugBunny_ai
Improper Input Validation in tar-fs
A vulnerability was found in tar-fs before 1.16.2. An Arbitrary File Overwrite issue exists when extracting a tarball containing a hardlink to a file that already exists on the system, in conjunction with a later plain file with the same name as the hardlink. This plain file content replaces the existing file content.
Remote Memory Exposure in bl
A buffer over-read vulnerability exists in bl <4.0.3, <3.0.1, <2.2.1, and <1.2.3 which could allow an attacker to supply user input (even typed) that if it ends up in consume() argument and can become negative, the BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.