All the vulnerabilities related to the version 0.0.4 of the package
Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious code
Using Babel to compile code that was specifically crafted by an attacker can lead to arbitrary code execution during compilation, when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Known affected plugins are:
@babel/plugin-transform-runtime
@babel/preset-env
when using its useBuiltIns
option@babel/helper-define-polyfill-provider
, such as babel-plugin-polyfill-corejs3
, babel-plugin-polyfill-corejs2
, babel-plugin-polyfill-es-shims
, babel-plugin-polyfill-regenerator
No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
The vulnerability has been fixed in @babel/traverse@7.23.2
.
Babel 6 does not receive security fixes anymore (see Babel's security policy), hence there is no patch planned for babel-traverse@6
.
@babel/traverse
to v7.23.2 or higher. You can do this by deleting it from your package manager's lockfile and re-installing the dependencies. @babel/core
>=7.23.2 will automatically pull in a non-vulnerable version.@babel/traverse
and are using one of the affected packages mentioned above, upgrade them to their latest version to avoid triggering the vulnerable code path in affected @babel/traverse
versions:
@babel/plugin-transform-runtime
v7.23.2@babel/preset-env
v7.23.2@babel/helper-define-polyfill-provider
v0.4.3babel-plugin-polyfill-corejs2
v0.4.6babel-plugin-polyfill-corejs3
v0.8.5babel-plugin-polyfill-es-shims
v0.10.0babel-plugin-polyfill-regenerator
v0.5.3Prototype Pollution in JSON5 via Parse Method
The parse
method of the JSON5 library before and including version 2.2.1
does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object.
This vulnerability pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype, which is the commonly understood definition of Prototype Pollution. However, polluting the prototype of a single object can have significant security impact for an application if the object is later used in trusted operations.
This vulnerability could allow an attacker to set arbitrary and unexpected keys on the object returned from JSON5.parse
. The actual impact will depend on how applications utilize the returned object and how they filter unwanted keys, but could include denial of service, cross-site scripting, elevation of privilege, and in extreme cases, remote code execution.
This vulnerability is patched in json5 v2.2.2 and later. A patch has also been backported for json5 v1 in versions v1.0.2 and later.
Suppose a developer wants to allow users and admins to perform some risky operation, but they want to restrict what non-admins can do. To accomplish this, they accept a JSON blob from the user, parse it using JSON5.parse
, confirm that the provided data does not set some sensitive keys, and then performs the risky operation using the validated data:
const JSON5 = require('json5');
const doSomethingDangerous = (props) => {
if (props.isAdmin) {
console.log('Doing dangerous thing as admin.');
} else {
console.log('Doing dangerous thing as user.');
}
};
const secCheckKeysSet = (obj, searchKeys) => {
let searchKeyFound = false;
Object.keys(obj).forEach((key) => {
if (searchKeys.indexOf(key) > -1) {
searchKeyFound = true;
}
});
return searchKeyFound;
};
const props = JSON5.parse('{"foo": "bar"}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as user."
} else {
throw new Error('Forbidden...');
}
If the user attempts to set the isAdmin
key, their request will be rejected:
const props = JSON5.parse('{"foo": "bar", "isAdmin": true}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props);
} else {
throw new Error('Forbidden...'); // Error: Forbidden...
}
However, users can instead set the __proto__
key to {"isAdmin": true}
. JSON5
will parse this key and will set the isAdmin
key on the prototype of the returned object, allowing the user to bypass the security check and run their request as an admin:
const props = JSON5.parse('{"foo": "bar", "__proto__": {"isAdmin": true}}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as admin."
} else {
throw new Error('Forbidden...');
}
Arbitrary Code Execution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.2 are vulnerable to Arbitrary Code Execution. The package's lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript in the system. It can be used to run arbitrary code in a server processing Handlebars templates or on a victim's browser (effectively serving as Cross-Site Scripting).
The following template can be used to demonstrate the vulnerability:
{{#with split as |a|}}
{{pop (push "alert('Vulnerable Handlebars JS');")}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 a)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}```
## Recommendation
Upgrade to version 3.0.8, 4.5.2 or later.
Arbitrary Code Execution in Handlebars
Handlebars before 3.0.8 and 4.x before 4.5.3 is vulnerable to Arbitrary Code Execution. The lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript. This can be used to run arbitrary code on a server processing Handlebars templates or in a victim's browser (effectively serving as XSS).
Prototype Pollution in handlebars
The package handlebars before 4.7.7 are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.
Cross-Site Scripting in handlebars
Versions of handlebars
prior to 4.0.0 are affected by a cross-site scripting vulnerability when attributes in handlebar templates are not quoted.
Template:
<a href={{foo}}/>
Input:
{ 'foo' : 'test.com onload=alert(1)'}
Rendered result:
<a href=test.com onload=alert(1)/>
Update to version 4.0.0 or later. Alternatively, ensure that all attributes in handlebars templates are encapsulated with quotes.
Remote code execution in handlebars when compiling templates
The package handlebars before 4.7.7 are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.
Prototype Pollution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.3 are vulnerable to prototype pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.
Upgrade to version 3.0.8, 4.5.3 or later.
Arbitrary Code Execution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.3 are vulnerable to Arbitrary Code Execution. The package's lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript in the system. It is due to an incomplete fix for a previous issue. This vulnerability can be used to run arbitrary code in a server processing Handlebars templates or on a victim's browser (effectively serving as Cross-Site Scripting).
Upgrade to version 3.0.8, 4.5.3 or later.
Prototype Pollution in handlebars
Versions of handlebars
prior to 4.0.14 are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype, thus allowing an attacker to execute arbitrary code on the server.
For handlebars 4.1.x upgrade to 4.1.2 or later. For handlebars 4.0.x upgrade to 4.0.14 or later.
Prototype Pollution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.3.0 are vulnerable to Prototype Pollution leading to Remote Code Execution. Templates may alter an Objects' __proto__
and __defineGetter__
properties, which may allow an attacker to execute arbitrary code through crafted payloads.
Upgrade to version 3.0.8, 4.3.0 or later.
Incorrect Handling of Non-Boolean Comparisons During Minification in uglify-js
Versions of uglify-js
prior to 2.4.24 are affected by a vulnerability which may cause crafted JavaScript to have altered functionality after minification.
Upgrade UglifyJS to version >= 2.4.24.
Regular Expression Denial of Service in uglify-js
Versions of uglify-js
prior to 2.6.0 are affected by a regular expression denial of service vulnerability when malicious inputs are passed into the parse()
method.
var u = require('uglify-js');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
u.parse("var a = " + genstr(process.argv[2], "1") + ".1ee7;");
$ time node test.js 10000
real 0m1.091s
user 0m1.047s
sys 0m0.039s
$ time node test.js 80000
real 0m6.486s
user 0m6.229s
sys 0m0.094s
Update to version 2.6.0 or later.
tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
Improper Certificate Validation in node-sass
Certificate validation in node-sass 2.0.0 to 6.0.1 is disabled when requesting binaries even if the user is not specifying an alternative download path.
Uncontrolled Resource Consumption in trim-newlines
@rkesters/gnuplot is an easy to use node module to draw charts using gnuplot and ps2pdf. The trim-newlines package before 3.0.1 and 4.x before 4.0.1 for Node.js has an issue related to regular expression denial-of-service (ReDoS) for the .end()
method.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.
Arbitrary File Creation/Overwrite due to insufficient absolute path sanitization
Arbitrary File Creation, Arbitrary File Overwrite, Arbitrary Code Execution
node-tar
aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths
flag is not set to true
. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example /home/user/.bashrc
would turn into home/user/.bashrc
.
This logic was insufficient when file paths contained repeated path roots such as ////home/user/.bashrc
. node-tar
would only strip a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc
) would still resolve to an absolute path, thus allowing arbitrary file creation and overwrite.
3.2.2 || 4.4.14 || 5.0.6 || 6.1.1
NOTE: an adjacent issue CVE-2021-32803 affects this release level. Please ensure you update to the latest patch levels that address CVE-2021-32803 as well if this adjacent issue affects your node-tar
use case.
Users may work around this vulnerability without upgrading by creating a custom onentry
method which sanitizes the entry.path
or a filter
method which removes entries with absolute paths.
const path = require('path')
const tar = require('tar')
tar.x({
file: 'archive.tgz',
// either add this function...
onentry: (entry) => {
if (path.isAbsolute(entry.path)) {
entry.path = sanitizeAbsolutePathSomehow(entry.path)
entry.absolute = path.resolve(entry.path)
}
},
// or this one
filter: (file, entry) => {
if (path.isAbsolute(entry.path)) {
return false
} else {
return true
}
}
})
Users are encouraged to upgrade to the latest patch versions, rather than attempt to sanitize tar input themselves.
Arbitrary File Creation/Overwrite on Windows via insufficient relative path sanitization
Arbitrary File Creation, Arbitrary File Overwrite, Arbitrary Code Execution
node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain ..
path portions, and resolving the sanitized paths against the extraction target directory.
This logic was insufficient on Windows systems when extracting tar files that contained a path that was not an absolute path, but specified a drive letter different from the extraction target, such as C:some\path
. If the drive letter does not match the extraction target, for example D:\extraction\dir
, then the result of path.resolve(extractionDirectory, entryPath)
would resolve against the current working directory on the C:
drive, rather than the extraction target directory.
Additionally, a ..
portion of the path could occur immediately after the drive letter, such as C:../foo
, and was not properly sanitized by the logic that checked for ..
within the normalized and split portions of the path.
This only affects users of node-tar
on Windows systems.
4.4.18 || 5.0.10 || 6.1.9
There is no reasonable way to work around this issue without performing the same path normalization procedures that node-tar now does.
Users are encouraged to upgrade to the latest patched versions of node-tar, rather than attempt to sanitize paths themselves.
The fixed versions strip path roots from all paths prior to being resolved against the extraction target folder, even if such paths are not "absolute".
Additionally, a path starting with a drive letter and then two dots, like c:../
, would bypass the check for ..
path portions. This is checked properly in the patched versions.
Finally, a defense in depth check is added, such that if the entry.absolute
is outside of the extraction taret, and we are not in preservePaths:true mode, a warning is raised on that entry, and it is skipped. Currently, it is believed that this check is redundant, but it did catch some oversights in development.
Denial of service while parsing a tar file due to lack of folders count validation
During some analysis today on npm's node-tar
package I came across the folder creation process, Basicly if you provide node-tar with a path like this ./a/b/c/foo.txt
it would create every folder and sub-folder here a, b and c until it reaches the last folder to create foo.txt
, In-this case I noticed that there's no validation at all on the amount of folders being created, that said we're actually able to CPU and memory consume the system running node-tar and even crash the nodejs client within few seconds of running it using a path with too many sub-folders inside
You can reproduce this issue by downloading the tar file I provided in the resources and using node-tar to extract it, you should get the same behavior as the video
Here's a video show-casing the exploit:
Denial of service by crashing the nodejs client when attempting to parse a tar archive, make it run out of heap memory and consuming server CPU and memory resources
This report was originally reported to GitHub bug bounty program, they asked me to report it to you a month ago
Regular expression denial of service in scss-tokenizer
All versions of the package scss-tokenizer
prior to 0.4.3 are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation()
function, due to the usage of insecure regex.
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.