All the vulnerabilities related to the version 0.3.0 of the package
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Denial of Service in js-yaml
Versions of js-yaml
prior to 3.13.0 are vulnerable to Denial of Service. By parsing a carefully-crafted YAML file, the node process stalls and may exhaust system resources leading to a Denial of Service.
Upgrade to version 3.13.0.
Code Injection in js-yaml
Versions of js-yaml
prior to 3.13.1 are vulnerable to Code Injection. The load()
function may execute arbitrary code injected through a malicious YAML file. Objects that have toString
as key, JavaScript code as value and are used as explicit mapping keys allow attackers to execute the supplied code through the load()
function. The safeLoad()
function is unaffected.
An example payload is
{ toString: !<tag:yaml.org,2002:js/function> 'function (){return Date.now()}' } : 1
which returns the object
{
"1553107949161": 1
}
Upgrade to version 3.13.1.
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Arbitrary Code Execution in grunt
The package grunt before 1.3.0 are vulnerable to Arbitrary Code Execution due to the default usage of the function load() instead of its secure replacement safeLoad() of the package js-yaml inside grunt.file.readYAML.
Path Traversal in Grunt
Grunt prior to version 1.5.2 is vulnerable to path traversal.
Race Condition in Grunt
file.copy operations in GruntJS are vulnerable to a TOCTOU race condition leading to arbitrary file write in GitHub repository gruntjs/grunt prior to 1.5.3. This vulnerability is capable of arbitrary file writes which can lead to local privilege escalation to the GruntJS user if a lower-privileged user has write access to both source and destination directories as the lower-privileged user can create a symlink to the GruntJS user's .bashrc file or replace /etc/shadow file if the GruntJS user is root.
Prototype pollution in getobject
Prototype pollution vulnerability in 'getobject' version 0.1.0 allows an attacker to cause a denial of service and may lead to remote code execution.
Regular Expression Denial of Service in underscore.string
Versions of underscore.string
prior to 3.3.5 are vulnerable to Regular Expression Denial of Service (ReDoS).
The function unescapeHTML
is vulnerable to ReDoS due to an overly-broad regex. The slowdown is approximately 2s for 50,000 characters but grows exponentially with larger inputs.
Upgrade to version 3.3.5 or higher.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Regular Expression Denial of Service (ReDoS) in lodash
lodash prior to 4.7.11 is affected by: CWE-400: Uncontrolled Resource Consumption. The impact is: Denial of service. The component is: Date handler. The attack vector is: Attacker provides very long strings, which the library attempts to match using a regular expression. The fixed version is: 4.7.11.
Regular Expression Denial of Service (ReDoS) in lodash
All versions of package lodash prior to 4.17.21 are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
Steps to reproduce (provided by reporter Liyuan Chen):
var lo = require('lodash');
function build_blank(n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000) var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0);
var time1 = Date.now();
lo.toNumber(s) var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1);
var time2 = Date.now();
lo.trimEnd(s);
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2);
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Multiple Content Injection Vulnerabilities in marked
Versions 0.3.0 and earlier of marked
are affected by two cross-site scripting vulnerabilities, even when sanitize: true
is set.
The attack vectors for this vulnerability are GFM Codeblocks and JavaScript URLs.
Upgrade to version 0.3.1 or later.
VBScript Content Injection in marked
Versions 0.3.2 and earlier of marked
are affected by a cross-site scripting vulnerability even when sanitize:true
is set.
[xss link](vbscript:alert(1))
will get a link
<a href="vbscript:alert(1)">xss link</a>
Update to version 0.3.3 or later.
Regular Expression Denial of Service in marked
Versions 0.3.3 and earlier of marked
are affected by a regular expression denial of service ( ReDoS ) vulnerability when passed inputs that reach the em
inline rule.
Update to version 0.3.4 or later.
Sanitization bypass using HTML Entities in marked
Affected versions of marked
are susceptible to a cross-site scripting vulnerability in link components when sanitize:true
is configured.
This flaw exists because link URIs containing HTML entities get processed in an abnormal manner. Any HTML Entities get parsed on a best-effort basis and included in the resulting link, while if that parsing fails that character is omitted.
For example:
A link URI such as
javascript֍ocument;alert(1)
Renders a valid link that when clicked will execute alert(1)
.
Update to version 0.3.6 or later.
Marked vulnerable to XSS from data URIs
marked version 0.3.6 and earlier is vulnerable to an XSS attack in the data: URI parser.
Regular Expression Denial of Service in marked
Affected versions of marked
are vulnerable to a regular expression denial of service.
The amplification in this vulnerability is significant, with 1,000 characters resulting in the event loop being blocked for around 6 seconds.
Update to version 0.3.9 or later.
Marked allows Regular Expression Denial of Service (ReDoS) attacks
Marked prior to version 0.3.17 is vulnerable to a Regular Expression Denial of Service (ReDoS) attack due to catastrophic backtracking in several regular expressions used for parsing HTML tags and markdown links. An attacker can exploit this vulnerability by providing specially crafted markdown input, such as deeply nested or repetitively structured brackets or tag attributes, which cause the parser to hang and lead to a Denial of Service.
Inefficient Regular Expression Complexity in marked
What kind of vulnerability is it?
Denial of service.
The regular expression inline.reflinkSearch
may cause catastrophic backtracking against some strings.
PoC is the following.
import * as marked from 'marked';
console.log(marked.parse(`[x]: x
\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](`));
Who is impacted?
Anyone who runs untrusted markdown through marked and does not use a worker with a time limit.
Has the problem been patched?
Yes
What versions should users upgrade to?
4.0.10
Is there a way for users to fix or remediate the vulnerability without upgrading?
Do not run untrusted markdown through marked or run marked on a worker thread and set a reasonable time limit to prevent draining resources.
Are there any links users can visit to find out more?
If you have any questions or comments about this advisory:
Inefficient Regular Expression Complexity in marked
What kind of vulnerability is it?
Denial of service.
The regular expression block.def
may cause catastrophic backtracking against some strings.
PoC is the following.
import * as marked from "marked";
marked.parse(`[x]:${' '.repeat(1500)}x ${' '.repeat(1500)} x`);
Who is impacted?
Anyone who runs untrusted markdown through marked and does not use a worker with a time limit.
Has the problem been patched?
Yes
What versions should users upgrade to?
4.0.10
Is there a way for users to fix or remediate the vulnerability without upgrading?
Do not run untrusted markdown through marked or run marked on a worker thread and set a reasonable time limit to prevent draining resources.
Are there any links users can visit to find out more?
If you have any questions or comments about this advisory: