Jest CLI version 12.0.0 introduces several updates and improvements over the previous stable version 11.0.2, making it a worthwhile upgrade for JavaScript developers focused on painless unit testing. Both versions share the same core description, aiming to simplify JavaScript testing processes. However, significant changes can be observed in the dependent packages. Notably, version 12.0.0 upgrades key dependencies like jest-mock, jest-util, jest-jasmine1, jest-jasmine2, jest-haste-map and jest-environment-node, and jest-environment-jsdom to version 12.0.0, ensuring compatibility and access to the latest features of those packages. The older version of jest-cli depended in version ^11.0.2 of each one of them. Furthermore, node-haste dependency was removed, and jest-haste-map dependency was added. This modification likely reflects internal architectural refinements and optimizations for the test runner.
On the developer dependencies side, lerna was updated from version 1.1.2 to version 2.0.0-beta.6, and babel-eslint was updated from version 6.0.2 to version 6.0.4. These updates likely bring enhancements to the development workflow, potentially improving the efficiency of contributing to the Jest project itself. While the core testing functionalities remain consistent, developers should upgrade to leverage the bug fixes, performance improvements, and new features introduced across these updated internal dependencies in Jest 12.0.0. The release date difference indicates active maintenance and a commitment to providing the latest advancements in JavaScript testing.
All the vulnerabilities related to the version 12.0.0 of the package
Regular Expression Denial of Service (ReDoS)
A vulnerability was found in diff before v3.5.0, the affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch
prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces()
in index.js
because the pattern .*
will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.
Regular Expression Denial of Service (ReDoS) in braces
A vulnerability was found in Braces versions prior to 2.3.1. Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.
Regular Expression Denial of Service in braces
Versions of braces
prior to 2.3.1 are vulnerable to Regular Expression Denial of Service (ReDoS). Untrusted input may cause catastrophic backtracking while matching regular expressions. This can cause the application to be unresponsive leading to Denial of Service.
Upgrade to version 2.3.1 or higher.
Uncontrolled resource consumption in braces
The NPM package braces
fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js,
if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
Prototype Pollution in merge
All versions of package merge <2.1.1 are vulnerable to Prototype Pollution via _recursiveMerge .
Regular Expression Denial of Service in underscore.string
Versions of underscore.string
prior to 3.3.5 are vulnerable to Regular Expression Denial of Service (ReDoS).
The function unescapeHTML
is vulnerable to ReDoS due to an overly-broad regex. The slowdown is approximately 2s for 50,000 characters but grows exponentially with larger inputs.
Upgrade to version 3.3.5 or higher.
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.