All the vulnerabilities related to the version 0.5.2 of the package
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick
, set
, setWith
, update
, updateWith
, and zipObjectDeep
allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Server-Side Request Forgery in Request
The request
package through 2.88.2 for Node.js and the @cypress/request
package prior to 3.0.0 allow a bypass of SSRF mitigations via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: The request
package is no longer supported by the maintainer.
tough-cookie Prototype Pollution vulnerability
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. This issue arises from the manner in which the objects are initialized.
form-data uses unsafe random function in form-data for choosing boundary
form-data uses Math.random()
to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:
Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.
This is largely the same vulnerability as was recently found in undici
by parrot409
-- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.
The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347
An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id
header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random()
is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)
PoC here: https://github.com/benweissmann/CVE-2025-7783-poc
Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID).
For an application to be vulnerable, it must:
form-data
to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.
Code Injection in pac-resolver
This affects the package pac-resolver before 5.0.0. This can occur when used with untrusted input, due to unsafe PAC file handling. NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency written by the same maintainer.
Code Injection in pac-resolver
This affects the package pac-resolver before 5.0.0. This can occur when used with untrusted input, due to unsafe PAC file handling. NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency written by the same maintainer.
ip SSRF improper categorization in isPublic
The ip package through 2.0.1 for Node.js might allow SSRF because some IP addresses (such as 127.1, 01200034567, 012.1.2.3, 000:0:0000::01, and ::fFFf:127.0.0.1) are improperly categorized as globally routable via isPublic. NOTE: this issue exists because of an incomplete fix for CVE-2023-42282.
Improper parsing of octal bytes in netmask
Improper input validation of octal strings in netmask npm package v1.0.6 and below allows unauthenticated remote attackers to perform indeterminate SSRF, RFI, and LFI attacks on many of the dependent packages. A remote unauthenticated attacker can bypass packages relying on netmask to filter IPs and reach critical VPN or LAN hosts.
:exclamation: NOTE: The fix for this issue was incomplete. A subsequent fix was made in version 2.0.1
which was assigned CVE-2021-29418 / GHSA-pch5-whg9-qr2r. For complete protection from this vulnerability an upgrade to version 2.0.1 or later is recommended.
netmask npm package mishandles octal input data
The netmask package before 2.0.1 for Node.js mishandles certain unexpected characters in an IP address string, such as an octal digit of 9. This (in some situations) allows attackers to bypass access control that is based on IP addresses. NOTE: this issue exists because of an incomplete fix for CVE-2021-28918.
Got allows a redirect to a UNIX socket
The got package before 11.8.5 and 12.1.0 for Node.js allows a redirect to a UNIX socket.