Karma is a popular JavaScript test runner used to execute tests in real browsers, making it an invaluable tool for ensuring code quality and cross-browser compatibility. Comparing versions 0.8.6 and 0.8.7, developers will find minimal differences in the core dependencies and development dependencies. Both versions rely on the same set of libraries such as 'q' for promises, 'glob' for file matching, 'socket.io' for communication, and testing frameworks like 'mocha', 'chai', and 'sinon'. This indicates a stable foundation for testing workflows.
The significant difference lies in their release dates, with version 0.8.7 being released approximately a month after 0.8.6. While specifics of the changes between these versions are not detailed in provided metadata, typically such minor version bumps (0.8.x) address bug fixes, performance improvements, or small feature enhancements. For developers, upgrading from 0.8.6 to 0.8.7 should generally be a safe and straightforward process. If encountering problems it is advised to check the official Karma changelog or release notes for detailed information on the changes incorporated in version 0.8.7.
Using Karma allows developers to automate their testing process, ensuring that code changes do not introduce regressions. Its ability to run tests in multiple browsers environments simultaneously provides comprehensive test coverage.
All the vulnerabilities related to the version 0.8.7 of the package
Cross-site Scripting in karma
karma prior to version 6.3.14 contains a cross-site scripting vulnerability.
Open redirect in karma
Karma before 6.3.16 is vulnerable to Open Redirect due to missing validation of the return_url query parameter.
mime Regular Expression Denial of Service when MIME lookup performed on untrusted user input
Affected versions of mime
are vulnerable to regular expression denial of service when a mime lookup is performed on untrusted user input.
Update to version 2.0.3 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep
allows a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.12 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.5 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via __proto__
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.5 or later.
Prototype Pollution in lodash
Versions of lodash
before 4.17.11 are vulnerable to prototype pollution.
The vulnerable functions are 'defaultsDeep', 'merge', and 'mergeWith' which allow a malicious user to modify the prototype of Object
via {constructor: {prototype: {...}}}
causing the addition or modification of an existing property that will exist on all objects.
Update to version 4.17.11 or later.
Regular Expression Denial of Service (ReDoS) in lodash
lodash prior to 4.7.11 is affected by: CWE-400: Uncontrolled Resource Consumption. The impact is: Denial of service. The component is: Date handler. The attack vector is: Attacker provides very long strings, which the library attempts to match using a regular expression. The fixed version is: 4.7.11.
Regular Expression Denial of Service (ReDoS) in lodash
All versions of package lodash prior to 4.17.21 are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
Steps to reproduce (provided by reporter Liyuan Chen):
var lo = require('lodash');
function build_blank(n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000) var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0);
var time1 = Date.now();
lo.toNumber(s) var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1);
var time2 = Date.now();
lo.trimEnd(s);
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2);
Command Injection in lodash
lodash
versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Incorrect Default Permissions in log4js
Default file permissions for log files created by the file, fileSync and dateFile appenders are world-readable (in unix). This could cause problems if log files contain sensitive information. This would affect any users that have not supplied their own permissions for the files via the mode parameter in the config.
Fixed by:
Released to NPM in log4js@6.4.0
Every version of log4js published allows passing the mode parameter to the configuration of file appenders, see the documentation for details.
Thanks to ranjit-git for raising the issue, and to @lamweili for fixing the problem.
If you have any questions or comments about this advisory:
semver vulnerable to Regular Expression Denial of Service
Versions of the package semver before 7.5.2 on the 7.x branch, before 6.3.1 on the 6.x branch, and all other versions before 5.7.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
Prototype Pollution in handlebars
Versions of handlebars
prior to 4.0.14 are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype, thus allowing an attacker to execute arbitrary code on the server.
For handlebars 4.1.x upgrade to 4.1.2 or later. For handlebars 4.0.x upgrade to 4.0.14 or later.
Arbitrary Code Execution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.2 are vulnerable to Arbitrary Code Execution. The package's lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript in the system. It can be used to run arbitrary code in a server processing Handlebars templates or on a victim's browser (effectively serving as Cross-Site Scripting).
The following template can be used to demonstrate the vulnerability:
{{#with split as |a|}}
{{pop (push "alert('Vulnerable Handlebars JS');")}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 a)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}```
## Recommendation
Upgrade to version 3.0.8, 4.5.2 or later.
Arbitrary Code Execution in Handlebars
Handlebars before 3.0.8 and 4.x before 4.5.3 is vulnerable to Arbitrary Code Execution. The lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript. This can be used to run arbitrary code on a server processing Handlebars templates or in a victim's browser (effectively serving as XSS).
Prototype Pollution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.3 are vulnerable to prototype pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.
Upgrade to version 3.0.8, 4.5.3 or later.
Arbitrary Code Execution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.5.3 are vulnerable to Arbitrary Code Execution. The package's lookup helper fails to properly validate templates, allowing attackers to submit templates that execute arbitrary JavaScript in the system. It is due to an incomplete fix for a previous issue. This vulnerability can be used to run arbitrary code in a server processing Handlebars templates or on a victim's browser (effectively serving as Cross-Site Scripting).
Upgrade to version 3.0.8, 4.5.3 or later.
Prototype Pollution in handlebars
Versions of handlebars
prior to 3.0.8 or 4.3.0 are vulnerable to Prototype Pollution leading to Remote Code Execution. Templates may alter an Objects' __proto__
and __defineGetter__
properties, which may allow an attacker to execute arbitrary code through crafted payloads.
Upgrade to version 3.0.8, 4.3.0 or later.
Cross-Site Scripting in handlebars
Versions of handlebars
prior to 4.0.0 are affected by a cross-site scripting vulnerability when attributes in handlebar templates are not quoted.
Template:
<a href={{foo}}/>
Input:
{ 'foo' : 'test.com onload=alert(1)'}
Rendered result:
<a href=test.com onload=alert(1)/>
Update to version 4.0.0 or later. Alternatively, ensure that all attributes in handlebars templates are encapsulated with quotes.
Prototype Pollution in handlebars
The package handlebars before 4.7.7 are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.
Remote code execution in handlebars when compiling templates
The package handlebars before 4.7.7 are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.
Incorrect Handling of Non-Boolean Comparisons During Minification in uglify-js
Versions of uglify-js
prior to 2.4.24 are affected by a vulnerability which may cause crafted JavaScript to have altered functionality after minification.
Upgrade UglifyJS to version >= 2.4.24.
Regular Expression Denial of Service in uglify-js
Versions of uglify-js
prior to 2.6.0 are affected by a regular expression denial of service vulnerability when malicious inputs are passed into the parse()
method.
var u = require('uglify-js');
var genstr = function (len, chr) {
var result = "";
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
u.parse("var a = " + genstr(process.argv[2], "1") + ".1ee7;");
$ time node test.js 10000
real 0m1.091s
user 0m1.047s
sys 0m0.039s
$ time node test.js 80000
real 0m6.486s
user 0m6.229s
sys 0m0.094s
Update to version 2.6.0 or later.
Regular Expression Denial of Service in minimatch
Affected versions of minimatch
are vulnerable to regular expression denial of service attacks when user input is passed into the pattern
argument of minimatch(path, pattern)
.
var minimatch = require(“minimatch”);
// utility function for generating long strings
var genstr = function (len, chr) {
var result = “”;
for (i=0; i<=len; i++) {
result = result + chr;
}
return result;
}
var exploit = “[!” + genstr(1000000, “\\”) + “A”;
// minimatch exploit.
console.log(“starting minimatch”);
minimatch(“foo”, exploit);
console.log(“finishing minimatch”);
Update to version 3.0.2 or later.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
CORS misconfiguration in socket.io
The package socket.io before 2.4.0 are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.
socket.io has an unhandled 'error' event
A specially crafted Socket.IO packet can trigger an uncaught exception on the Socket.IO server, thus killing the Node.js process.
node:events:502
throw err; // Unhandled 'error' event
^
Error [ERR_UNHANDLED_ERROR]: Unhandled error. (undefined)
at new NodeError (node:internal/errors:405:5)
at Socket.emit (node:events:500:17)
at /myapp/node_modules/socket.io/lib/socket.js:531:14
at process.processTicksAndRejections (node:internal/process/task_queues:77:11) {
code: 'ERR_UNHANDLED_ERROR',
context: undefined
}
| Version range | Needs minor update? |
|------------------|------------------------------------------------|
| 4.6.2...latest
| Nothing to do |
| 3.0.0...4.6.1
| Please upgrade to socket.io@4.6.2
(at least) |
| 2.3.0...2.5.0
| Please upgrade to socket.io@2.5.1
|
This issue is fixed by https://github.com/socketio/socket.io/commit/15af22fc22bc6030fcead322c106f07640336115, included in socket.io@4.6.2
(released in May 2023).
The fix was backported in the 2.x branch today: https://github.com/socketio/socket.io/commit/d30630ba10562bf987f4d2b42440fc41a828119c
As a workaround for the affected versions of the socket.io
package, you can attach a listener for the "error" event:
io.on("connection", (socket) => {
socket.on("error", () => {
// ...
});
});
If you have any questions or comments about this advisory:
Thanks a lot to Paul Taylor for the responsible disclosure.
Remote Memory Disclosure in ws
Versions of ws
prior to 1.0.1 are affected by a remote memory disclosure vulnerability.
In certain rare circumstances, applications which allow users to control the arguments of a client.ping()
call will cause ws
to send the contents of an allocated but non-zero-filled buffer to the server. This may disclose sensitive information that still exists in memory after previous use of the memory for other tasks.
var ws = require('ws')
var server = new ws.Server({ port: 9000 })
var client = new ws('ws://localhost:9000')
client.on('open', function () {
console.log('open')
client.ping(50) // this sends a non-zeroed buffer of 50 bytes
client.on('pong', function (data) {
console.log('got pong')
console.log(data) // Data from the client.
})
})
Update to version 1.0.1 or greater.
DoS due to excessively large websocket message in ws
Affected versions of ws
do not appropriately limit the size of incoming websocket payloads, which may result in a denial of service condition when the node process crashes after receiving a large payload.
Update to version 1.1.1 or later.
Alternatively, set the maxpayload
option for the ws
server to a value smaller than 256MB.
Denial of Service in ws
Affected versions of ws
can crash when a specially crafted Sec-WebSocket-Extensions
header containing Object.prototype
property names as extension or parameter names is sent.
const WebSocket = require('ws');
const net = require('net');
const wss = new WebSocket.Server({ port: 3000 }, function () {
const payload = 'constructor'; // or ',;constructor'
const request = [
'GET / HTTP/1.1',
'Connection: Upgrade',
'Sec-WebSocket-Key: test',
'Sec-WebSocket-Version: 8',
`Sec-WebSocket-Extensions: ${payload}`,
'Upgrade: websocket',
'\r\n'
].join('\r\n');
const socket = net.connect(3000, function () {
socket.resume();
socket.write(request);
});
});
Update to version 3.3.1 or later.
xmlhttprequest and xmlhttprequest-ssl vulnerable to Arbitrary Code Injection
This affects the package xmlhttprequest before 1.7.0; all versions of package xmlhttprequest-ssl. Provided requests are sent synchronously (async=False
on xhr.open
), malicious user input flowing into xhr.send
could result in arbitrary code being injected and run.
Denial of Service in http-proxy
Versions of http-proxy
prior to 1.18.1 are vulnerable to Denial of Service. An HTTP request with a long body triggers an ERR_HTTP_HEADERS_SENT
unhandled exception that crashes the proxy server. This is only possible when the proxy server sets headers in the proxy request using the proxyReq.setHeader
function.
For a proxy server running on http://localhost:3000
, the following curl request triggers the unhandled exception:
curl -XPOST http://localhost:3000 -d "$(python -c 'print("x"*1025)')"
Upgrade to version 1.18.1 or later