Next.js 9.0.3 is a minor version update to the popular React framework, building upon the foundation laid by version 9.0.2. The core functionality remains consistent, providing developers with features like server-side rendering, static site generation, and automatic code splitting for building performant web applications. However, the key difference lies in the updated dependencies, with webpack being upgraded from version 4.35.3 to 4.38.0. This webpack update likely brings performance improvements, bug fixes, and potentially new features related to module bundling and optimization.
Developers relying on specific webpack configurations or plugins should carefully review the webpack changelog to ensure compatibility. While the update appears seamless for most users, those with customized webpack setups may need to adjust their configurations. Other dependency updates may include minor bug fixes and security patches across various packages, contributing to a more stable and reliable development environment. The tarball and unpacked size also reflect the changes. The file count increased between the two versions to 207 from 203 and the unpacked size grew to 487028 from 470111. Therefore, developers should test their applications thoroughly after upgrading to verify that the changed dependencies do not introduce any unexpected behavior.
All the vulnerabilities related to the version 9.0.3 of the package
Directory Traversal in Next.js
serverless
targetnext export
We recommend everyone to upgrade regardless of whether you can reproduce the issue or not.
https://github.com/zeit/next.js/releases/tag/v9.3.2
https://github.com/zeit/next.js/releases/tag/v9.3.2
Open Redirect in Next.js
Next.js is an open source website development framework to be used with the React library. In affected versions specially encoded paths could be used when pages/_error.js
was statically generated, allowing an open redirect to occur to an external site. In general, this redirect does not directly harm users although it can allow for phishing attacks by redirecting to an attacker's domain from a trusted domain.
10.0.5
and 10.2.0
11.0.0
and 11.0.1
using pages/_error.js
without getInitialProps
11.0.0
and 11.0.1
using pages/_error.js
and next export
pages/404.js
next
npm package hosted a different utility (0.4.1 being the latest version of that codebase), and this advisory does not apply to those versions.We recommend upgrading to the latest version of Next.js to improve the overall security of your application.
https://github.com/vercel/next.js/releases/tag/v11.1.0
Unexpected server crash in Next.js.
Next.js is a React framework. In versions of Next.js prior to 12.0.5 or 11.1.3, invalid or malformed URLs could lead to a server crash. In order to be affected by this issue, the deployment must use Next.js versions above 11.1.0 and below 12.0.5, Node.js above 15.0.0, and next start or a custom server. Deployments on Vercel are not affected, along with similar environments where invalid requests are filtered before reaching Next.js. Versions 12.0.5 and 11.1.3 contain patches for this issue. Note that prior version 0.9.9 package next
hosted a different utility (0.4.1 being the latest version of that codebase), and this advisory does not apply to those versions.
Next.js missing cache-control header may lead to CDN caching empty reply
Next.js before 13.4.20-canary.13 lacks a cache-control header and thus empty prefetch responses may sometimes be cached by a CDN, causing a denial of service to all users requesting the same URL via that CDN. Cloudflare considers these requests cacheable assets.
Next.js Race Condition to Cache Poisoning
Summary
We received a responsible disclosure from Allam Rachid (zhero) for a low-severity race-condition vulnerability in Next.js. This issue only affects the Pages Router under certain misconfigurations, causing normal endpoints to serve pageProps
data instead of standard HTML.
Credit
Thank you to Allam Rachid (zhero) for the responsible disclosure. This research was rewarded as part of our bug bounty program.
Next.js Affected by Cache Key Confusion for Image Optimization API Routes
A vulnerability in Next.js Image Optimization has been fixed in v15.4.5 and v14.2.31. When images returned from API routes vary based on request headers (such as Cookie
or Authorization
), these responses could be incorrectly cached and served to unauthorized users due to a cache key confusion bug.
All users are encouraged to upgrade if they use API routes to serve images that depend on request headers and have image optimization enabled.
More details at Vercel Changelog
Next.js Content Injection Vulnerability for Image Optimization
A vulnerability in Next.js Image Optimization has been fixed in v15.4.5 and v14.2.31. The issue allowed attacker-controlled external image sources to trigger file downloads with arbitrary content and filenames under specific configurations. This behavior could be abused for phishing or malicious file delivery.
All users relying on images.domains
or images.remotePatterns
are encouraged to upgrade and verify that external image sources are strictly validated.
More details at Vercel Changelog
Next.js Improper Middleware Redirect Handling Leads to SSRF
A vulnerability in Next.js Middleware has been fixed in v14.2.32 and v15.4.7. The issue occurred when request headers were directly passed into NextResponse.next()
. In self-hosted applications, this could allow Server-Side Request Forgery (SSRF) if certain sensitive headers from the incoming request were reflected back into the response.
All users implementing custom middleware logic in self-hosted environments are strongly encouraged to upgrade and verify correct usage of the next()
function.
More details at Vercel Changelog
Prototype Pollution in minimist
Affected versions of minimist
are vulnerable to prototype pollution. Arguments are not properly sanitized, allowing an attacker to modify the prototype of Object
, causing the addition or modification of an existing property that will exist on all objects.
Parsing the argument --__proto__.y=Polluted
adds a y
property with value Polluted
to all objects. The argument --__proto__=Polluted
raises and uncaught error and crashes the application.
This is exploitable if attackers have control over the arguments being passed to minimist
.
Upgrade to versions 0.2.1, 1.2.3 or later.
Prototype Pollution in minimist
Minimist prior to 1.2.6 and 0.2.4 is vulnerable to Prototype Pollution via file index.js
, function setKey()
(lines 69-95).
Terser insecure use of regular expressions leads to ReDoS
The package terser before 4.8.1, from 5.0.0 and before 5.14.2 are vulnerable to Regular Expression Denial of Service (ReDoS) due to insecure usage of regular expressions.
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch
prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces()
in index.js
because the pattern .*
will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.
Uncontrolled resource consumption in braces
The NPM package braces
fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js,
if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.
on-headers is vulnerable to http response header manipulation
A bug in on-headers versions < 1.1.0
may result in response headers being inadvertently modified when an array is passed to response.writeHead()
Users should upgrade to 1.1.0
Uses are encouraged to upgrade to 1.1.0
, but this issue can be worked around by passing an object to response.writeHead()
rather than an array.
send vulnerable to template injection that can lead to XSS
passing untrusted user input - even after sanitizing it - to SendStream.redirect()
may execute untrusted code
this issue is patched in send 0.19.0
users are encouraged to upgrade to the patched version of express, but otherwise can workaround this issue by making sure any untrusted inputs are safe, ideally by validating them against an explicit allowlist
successful exploitation of this vector requires the following:
cookie accepts cookie name, path, and domain with out of bounds characters
The cookie name could be used to set other fields of the cookie, resulting in an unexpected cookie value. For example, serialize("userName=<script>alert('XSS3')</script>; Max-Age=2592000; a", value)
would result in "userName=<script>alert('XSS3')</script>; Max-Age=2592000; a=test"
, setting userName
cookie to <script>
and ignoring value
.
A similar escape can be used for path
and domain
, which could be abused to alter other fields of the cookie.
Upgrade to 0.7.0, which updates the validation for name
, path
, and domain
.
Avoid passing untrusted or arbitrary values for these fields, ensure they are set by the application instead of user input.
path-to-regexp outputs backtracking regular expressions
A bad regular expression is generated any time you have two parameters within a single segment, separated by something that is not a period (.
). For example, /:a-:b
.
For users of 0.1, upgrade to 0.1.10
. All other users should upgrade to 8.0.0
.
These versions add backtrack protection when a custom regex pattern is not provided:
They do not protect against vulnerable user supplied capture groups. Protecting against explicit user patterns is out of scope for old versions and not considered a vulnerability.
Version 7.1.0 can enable strict: true
and get an error when the regular expression might be bad.
Version 8.0.0 removes the features that can cause a ReDoS.
All versions can be patched by providing a custom regular expression for parameters after the first in a single segment. As long as the custom regular expression does not match the text before the parameter, you will be safe. For example, change /:a-:b
to /:a-:b([^-/]+)
.
If paths cannot be rewritten and versions cannot be upgraded, another alternative is to limit the URL length. For example, halving the attack string improves performance by 4x faster.
Using /:a-:b
will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/
. This can be exploited by a path such as /a${'-a'.repeat(8_000)}/a
. OWASP has a good example of why this occurs, but the TL;DR is the /a
at the end ensures this route would never match but due to naive backtracking it will still attempt every combination of the :a-:b
on the repeated 8,000 -a
.
Because JavaScript is single threaded and regex matching runs on the main thread, poor performance will block the event loop and can lead to a DoS. In local benchmarks, exploiting the unsafe regex will result in performance that is over 1000x worse than the safe regex. In a more realistic environment using Express v4 and 10 concurrent connections, this translated to average latency of ~600ms vs 1ms.
Prototype pollution in webpack loader-utils
Prototype pollution vulnerability in function parseQuery in parseQuery.js in webpack loader-utils prior to version 2.0.3 via the name variable in parseQuery.js.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS) via url variable
A Regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils 2.0.0 via the url variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS)
A regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils via the resourcePath variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
Babel has inefficient RegExp complexity in generated code with .replace when transpiling named capturing groups
When using Babel to compile regular expression named capturing groups, Babel will generate a polyfill for the .replace
method that has quadratic complexity on some specific replacement pattern strings (i.e. the second argument passed to .replace
).
Your generated code is vulnerable if all the following conditions are true:
.replace
method on a regular expression that contains named capturing groups.replace
If you are using @babel/preset-env
with the targets
option, the transform that injects the vulnerable code is automatically enabled if:
You can verify what transforms @babel/preset-env
is using by enabling the debug
option.
This problem has been fixed in @babel/helpers
and @babel/runtime
7.26.10 and 8.0.0-alpha.17, please upgrade. It's likely that you do not directly depend on @babel/helpers
, and instead you depend on @babel/core
(which itself depends on @babel/helpers
). Upgrading to @babel/core
7.26.10 is not required, but it guarantees that you are on a new enough @babel/helpers
version.
Please note that just updating your Babel dependencies is not enough: you will also need to re-compile your code.
If you are passing user-provided strings as the second argument of .replace
on regular expressions that contain named capturing groups, validate the input and make sure it does not contain the substring $<
if it's then not followed by >
(possibly with other characters in between).
This vulnerability was reported and fixed in https://github.com/babel/babel/pull/17173.
Cross-Site Scripting in serialize-javascript
Versions of serialize-javascript
prior to 2.1.1 are vulnerable to Cross-Site Scripting (XSS). The package fails to sanitize serialized regular expressions. This vulnerability does not affect Node.js applications.
Upgrade to version 2.1.1 or later.
Insecure serialization leading to RCE in serialize-javascript
serialize-javascript prior to 3.1.0 allows remote attackers to inject arbitrary code via the function "deleteFunctions" within "index.js".
An object such as {"foo": /1"/, "bar": "a\"@__R-<UID>-0__@"}
was serialized as {"foo": /1"/, "bar": "a\/1"/}
, which allows an attacker to escape the bar
key. This requires the attacker to control the values of both foo
and bar
and guess the value of <UID>
. The UID has a keyspace of approximately 4 billion making it a realistic network attack.
Babel has inefficient RegExp complexity in generated code with .replace when transpiling named capturing groups
When using Babel to compile regular expression named capturing groups, Babel will generate a polyfill for the .replace
method that has quadratic complexity on some specific replacement pattern strings (i.e. the second argument passed to .replace
).
Your generated code is vulnerable if all the following conditions are true:
.replace
method on a regular expression that contains named capturing groups.replace
If you are using @babel/preset-env
with the targets
option, the transform that injects the vulnerable code is automatically enabled if:
You can verify what transforms @babel/preset-env
is using by enabling the debug
option.
This problem has been fixed in @babel/helpers
and @babel/runtime
7.26.10 and 8.0.0-alpha.17, please upgrade. It's likely that you do not directly depend on @babel/helpers
, and instead you depend on @babel/core
(which itself depends on @babel/helpers
). Upgrading to @babel/core
7.26.10 is not required, but it guarantees that you are on a new enough @babel/helpers
version.
Please note that just updating your Babel dependencies is not enough: you will also need to re-compile your code.
If you are passing user-provided strings as the second argument of .replace
on regular expressions that contain named capturing groups, validate the input and make sure it does not contain the substring $<
if it's then not followed by >
(possibly with other characters in between).
This vulnerability was reported and fixed in https://github.com/babel/babel/pull/17173.
Path traversal in webpack-dev-middleware
The webpack-dev-middleware middleware does not validate the supplied URL address sufficiently before returning the local file. It is possible to access any file on the developer's machine.
The middleware can either work with the physical filesystem when reading the files or it can use a virtualized in-memory memfs filesystem. If writeToDisk configuration option is set to true, the physical filesystem is used: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/setupOutputFileSystem.js#L21
The getFilenameFromUrl method is used to parse URL and build the local file path. The public path prefix is stripped from the URL, and the unsecaped path suffix is appended to the outputPath: https://github.com/webpack/webpack-dev-middleware/blob/7ed24e0b9f53ad1562343f9f517f0f0ad2a70377/src/utils/getFilenameFromUrl.js#L82 As the URL is not unescaped and normalized automatically before calling the midlleware, it is possible to use %2e and %2f sequences to perform path traversal attack.
A blank project can be created containing the following configuration file webpack.config.js:
module.exports = { devServer: { devMiddleware: { writeToDisk: true } } };
When started, it is possible to access any local file, e.g. /etc/passwd:
$ curl localhost:8080/public/..%2f..%2f..%2f..%2f../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
The developers using webpack-dev-server or webpack-dev-middleware are affected by the issue. When the project is started, an attacker might access any file on the developer's machine and exfiltrate the content (e.g. password, configuration files, private source code, ...).
If the development server is listening on a public IP address (or 0.0.0.0), an attacker on the local network can access the local files without any interaction from the victim (direct connection to the port).
If the server allows access from third-party domains (CORS, Allow-Access-Origin: * ), an attacker can send a malicious link to the victim. When visited, the client side script can connect to the local server and exfiltrate the local files.
The URL should be unescaped and normalized before any further processing.
Uncontrolled Resource Consumption in ansi-html
This affects all versions of package ansi-html. If an attacker provides a malicious string, it will get stuck processing the input for an extremely long time.