React-dev-utils version 10.1.0 is a minor release that includes dependency updates and bug fixes, building upon the core functionalities offered by version 10.0.0. The primary purpose of react-dev-utils remains consistent: to provide webpack utilities tailored for Create React App. For developers already using version 10.0.0, the upgrade introduces enhancements in underlying tools without requiring significant code changes.
Key upgrades in version 10.1.0 encompass refinements in packages like open, updated from version ^7.0.0 to ^6.4.0, chalk, upgraded from version 2.4.2 to 3.0.0, pkg-up upgraded from version 2.0.0 to 3.1.0, find-up upgraded from version 3.0.0 to 4.1.0, strip-ansi upgraded from version 5.2.0 to 6.0.0, browserslist upgraded from version 4.7.3 to 4.8.6, @babel/code-frame upgraded from version 7.5.5 to 7.8.3,react-error-overlay upgraded from version ^6.0.4 to ^6.0.5, escape-string-regexp upgraded from version 1.0.5 to 2.0.0, cross-env upgraded from version ^5.2.0 to ^6.0.3 to ensure compatibility and leverage newer features and security patches present in those tools. Notably, the filesize dependency received an update to version 6.0.1 from 3.6.1, potentially affecting how file sizes are reported, and inquirer was also upgraded from version 6.5.0 to 7.0.4. In contrast, version 10.1.0 includes cross-spawn upgraded from version 6.0.5 to 7.0.1. Developers should evaluate these dependency changes to confirm compatibility with their existing setups. These seemingly small version bumps can translate to noticeable improvements in startup time during development, more accurate error reporting, and better overall stability.
All the vulnerabilities related to the version 10.1.0 of the package
react-dev-utils OS Command Injection in function getProcessForPort
react-dev-utils prior to v11.0.4 exposes a function, getProcessForPort
, where an input argument is concatenated into a command string to be executed. This function is typically used from react-scripts (in Create React App projects), where the usage is safe. Only when this function is manually invoked with user-provided values (ie: by custom code) is there the potential for command injection. If you're consuming it from react-scripts then this issue does not affect you.
tmp allows arbitrary temporary file / directory write via symbolic link dir
parameter
tmp@0.2.3
is vulnerable to an Arbitrary temporary file / directory write via symbolic link dir
parameter.
According to the documentation there are some conditions that must be held:
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L41-L50
Other breaking changes, i.e.
- template must be relative to tmpdir
- name must be relative to tmpdir
- dir option must be relative to tmpdir //<-- this assumption can be bypassed using symlinks
are still in place.
In order to override the system's tmpdir, you will have to use the newly
introduced tmpdir option.
// https://github.com/raszi/node-tmp/blob/v0.2.3/README.md?plain=1#L375
* `dir`: the optional temporary directory that must be relative to the system's default temporary directory.
absolute paths are fine as long as they point to a location under the system's default temporary directory.
Any directories along the so specified path must exist, otherwise a ENOENT error will be thrown upon access,
as tmp will not check the availability of the path, nor will it establish the requested path for you.
Related issue: https://github.com/raszi/node-tmp/issues/207.
The issue occurs because _resolvePath
does not properly handle symbolic link when resolving paths:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L573-L579
function _resolvePath(name, tmpDir) {
if (name.startsWith(tmpDir)) {
return path.resolve(name);
} else {
return path.resolve(path.join(tmpDir, name));
}
}
If the dir
parameter points to a symlink that resolves to a folder outside the tmpDir
, it's possible to bypass the _assertIsRelative
check used in _assertAndSanitizeOptions
:
// https://github.com/raszi/node-tmp/blob/v0.2.3/lib/tmp.js#L590-L609
function _assertIsRelative(name, option, tmpDir) {
if (option === 'name') {
// assert that name is not absolute and does not contain a path
if (path.isAbsolute(name))
throw new Error(`${option} option must not contain an absolute path, found "${name}".`);
// must not fail on valid .<name> or ..<name> or similar such constructs
let basename = path.basename(name);
if (basename === '..' || basename === '.' || basename !== name)
throw new Error(`${option} option must not contain a path, found "${name}".`);
}
else { // if (option === 'dir' || option === 'template') {
// assert that dir or template are relative to tmpDir
if (path.isAbsolute(name) && !name.startsWith(tmpDir)) {
throw new Error(`${option} option must be relative to "${tmpDir}", found "${name}".`);
}
let resolvedPath = _resolvePath(name, tmpDir); //<---
if (!resolvedPath.startsWith(tmpDir))
throw new Error(`${option} option must be relative to "${tmpDir}", found "${resolvedPath}".`);
}
}
The following PoC demonstrates how writing a tmp file on a folder outside the tmpDir
is possible.
Tested on a Linux machine.
tmpDir
that points to a directory outside of itmkdir $HOME/mydir1
ln -s $HOME/mydir1 ${TMPDIR:-/tmp}/evil-dir
ls -lha $HOME/mydir1 | grep "tmp-"
node main.js
File: /tmp/evil-dir/tmp-26821-Vw87SLRaBIlf
test 1: ENOENT: no such file or directory, open '/tmp/mydir1/tmp-[random-id]'
test 2: dir option must be relative to "/tmp", found "/foo".
test 3: dir option must be relative to "/tmp", found "/home/user/mydir1".
$HOME/mydir1
(outside the tmpDir
):ls -lha $HOME/mydir1 | grep "tmp-"
-rw------- 1 user user 0 Apr X XX:XX tmp-[random-id]
main.js
// npm i tmp@0.2.3
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
A Potential fix could be to call fs.realpathSync
(or similar) that resolves also symbolic links.
function _resolvePath(name, tmpDir) {
let resolvedPath;
if (name.startsWith(tmpDir)) {
resolvedPath = path.resolve(name);
} else {
resolvedPath = path.resolve(path.join(tmpDir, name));
}
return fs.realpathSync(resolvedPath);
}
Arbitrary temporary file / directory write via symlink
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
Improper Neutralization of Special Elements used in a Command in Shell-quote
The shell-quote package before 1.7.3 for Node.js allows command injection. An attacker can inject unescaped shell metacharacters through a regex designed to support Windows drive letters. If the output of this package is passed to a real shell as a quoted argument to a command with exec()
, an attacker can inject arbitrary commands. This is because the Windows drive letter regex character class is [A-z]
instead of the correct [A-Za-z]
. Several shell metacharacters exist in the space between capital letter Z and lower case letter a, such as the backtick character.
Regular Expression Denial of Service in browserslist
The package browserslist from 4.0.0 and before 4.16.5 are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.
Prototype pollution in webpack loader-utils
Prototype pollution vulnerability in function parseQuery in parseQuery.js in webpack loader-utils prior to version 2.0.3 via the name variable in parseQuery.js.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS) via url variable
A Regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils 2.0.0 via the url variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS)
A regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils via the resourcePath variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch
prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces()
in index.js
because the pattern .*
will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.