React Dev Utils, a package offering webpack utilities crucial for Create React App, saw a minor version bump from 11.0.1 to 11.0.2, offering subtle yet important changes for developers. While the core functionality remains the same, several dependency updates highlight the focus on stability and security. Specifically, react-error-overlay moved from version 6.0.8 to 6.0.9 and jest moved from 26.4.2 to 26.6.0.
The upgrade to react-error-overlay likely incorporates bug fixes and potentially minor improvements in how errors are displayed within the development environment, providing a smoother debugging experience. The bump on the Jest version is more important to consider. It brings with it improvements in testing performance, new features, and bug fixes, ensuring robust unit testing. This leads to more robust and stable applications. Furthermore, the increased unpackedSize from 114677 to 114752 suggests minor code additions or adjustments. With continuous updates to dependencies like these, React Dev Utils equips React developers with the newest tools and keeps its dependencies up to date.
All the vulnerabilities related to the version 11.0.2 of the package
react-dev-utils OS Command Injection in function getProcessForPort
react-dev-utils prior to v11.0.4 exposes a function, getProcessForPort
, where an input argument is concatenated into a command string to be executed. This function is typically used from react-scripts (in Create React App projects), where the usage is safe. Only when this function is manually invoked with user-provided values (ie: by custom code) is there the potential for command injection. If you're consuming it from react-scripts then this issue does not affect you.
Prototype Pollution in immer
Affected versions of immer are vulnerable to Prototype Pollution.
const {applyPatches, enablePatches} = require("immer");
enablePatches();
let obj = {};
console.log("Before : " + obj.polluted);
applyPatches({}, [ { op: 'add', path: [ "__proto__", "polluted" ], value: "yes" } ]);
// applyPatches({}, [ { op: 'replace', path: [ "__proto__", "polluted" ], value: "yes" } ]);
console.log("After : " + obj.polluted);
Version 8.0.1 contains a fix for this vulnerability, updating is recommended.
Prototype Pollution in immer
This affects the package immer before 9.0.6. A type confusion vulnerability can lead to a bypass of CVE-2020-28477 when the user-provided keys used in the path parameter are arrays. In particular, this bypass is possible because the condition (p === "__proto__" || p === "constructor")
in applyPatches_
returns false if p
is ['__proto__']
(or ['constructor']
). The ===
operator (strict equality operator) returns false if the operands have different type.
Prototype Pollution in immer
immer is vulnerable to Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution').
Regular Expression Denial of Service (ReDoS) in cross-spawn
Versions of the package cross-spawn before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
Improper Neutralization of Special Elements used in a Command in Shell-quote
The shell-quote package before 1.7.3 for Node.js allows command injection. An attacker can inject unescaped shell metacharacters through a regex designed to support Windows drive letters. If the output of this package is passed to a real shell as a quoted argument to a command with exec()
, an attacker can inject arbitrary commands. This is because the Windows drive letter regex character class is [A-z]
instead of the correct [A-Za-z]
. Several shell metacharacters exist in the space between capital letter Z and lower case letter a, such as the backtick character.
Regular Expression Denial of Service in browserslist
The package browserslist from 4.0.0 and before 4.16.5 are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.
Prototype pollution in webpack loader-utils
Prototype pollution vulnerability in function parseQuery in parseQuery.js in webpack loader-utils prior to version 2.0.3 via the name variable in parseQuery.js.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS) via url variable
A Regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils 2.0.0 via the url variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
loader-utils is vulnerable to Regular Expression Denial of Service (ReDoS)
A regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils via the resourcePath variable in interpolateName.js. A badly or maliciously formed string could be used to send crafted requests that cause a system to crash or take a disproportional amount of time to process. This issue has been patched in versions 1.4.2, 2.0.4 and 3.2.1.
minimatch ReDoS vulnerability
A vulnerability was found in the minimatch package. This flaw allows a Regular Expression Denial of Service (ReDoS) when calling the braceExpand function with specific arguments, resulting in a Denial of Service.
Regular Expression Denial of Service (ReDoS) in micromatch
The NPM package micromatch
prior to version 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in micromatch.braces()
in index.js
because the pattern .*
will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persisted prior to https://github.com/micromatch/micromatch/pull/266. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching.
Uncontrolled resource consumption in braces
The NPM package braces
fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In lib/parse.js,
if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash.