Vite 5.4.17 is a minor release over 5.4.16, focusing on incremental improvements and bug fixes in this blazing-fast, next-generation frontend build tool. Both leverage a native ES module-based development server and Rollup for production builds, delivering significantly faster cold starts and build times compared to traditional bundlers. Key dependencies remain consistent, including Rollup, esbuild, and PostCSS, ensuring compatibility with existing projects. Development dependencies are also unchanged, providing a stable environment for plugin development and customization.
While the core functionality remains similar, the updated version likely addresses specific edge cases or performance bottlenecks identified in the previous release. The difference in unpackedSize and releaseDate suggests that the update includes some modifications but is not a major overhaul. Developers should upgrade to 5.4.17 to benefit from the latest optimizations and fixes, ensuring a smoother development experience. As with any minor version update, reviewing the changelog or release notes is recommended to understand the precise changes and any potential impact on existing configurations, especially those that rely on specific plugin versions or advanced features. Staying current allows developers to take full advantage of Vite's speed and efficiency when building modern web applications. Both versions still offer the same peer dependencies allowing for flexibility on tools like Less, Sass, Stylus, Terser, and Sass-embedded.
All the vulnerabilities related to the version 5.4.17 of the package
Vite has an server.fs.deny
bypass with an invalid request-target
The contents of arbitrary files can be returned to the browser if the dev server is running on Node or Bun.
Only apps with the following conditions are affected.
HTTP 1.1 spec (RFC 9112) does not allow #
in request-target
. Although an attacker can send such a request. For those requests with an invalid request-line
(it includes request-target
), the spec recommends to reject them with 400 or 301. The same can be said for HTTP 2 (ref1, ref2, ref3).
On Node and Bun, those requests are not rejected internally and is passed to the user land. For those requests, the value of http.IncomingMessage.url
contains #
. Vite assumed req.url
won't contain #
when checking server.fs.deny
, allowing those kinds of requests to bypass the check.
On Deno, those requests are not rejected internally and is passed to the user land as well. But for those requests, the value of http.IncomingMessage.url
did not contain #
.
npm create vite@latest
cd vite-project/
npm install
npm run dev
send request to read /etc/passwd
curl --request-target /@fs/Users/doggy/Desktop/vite-project/#/../../../../../etc/passwd http://127.0.0.1:5173
Vite's server.fs.deny bypassed with /. for files under project root
The contents of files in the project root
that are denied by a file matching pattern can be returned to the browser.
Only apps explicitly exposing the Vite dev server to the network (using --host or server.host config option) are affected.
Only files that are under project root
and are denied by a file matching pattern can be bypassed.
.env
, .env.*
, *.{crt,pem}
, **/.env
**/.git/**
, .git/**
, .git/**/*
server.fs.deny
can contain patterns matching against files (by default it includes .env
, .env.*
, *.{crt,pem}
as such patterns).
These patterns were able to bypass for files under root
by using a combination of slash and dot (/.
).
npm create vite@latest
cd vite-project/
cat "secret" > .env
npm install
npm run dev
curl --request-target /.env/. http://localhost:5173
esbuild enables any website to send any requests to the development server and read the response
esbuild allows any websites to send any request to the development server and read the response due to default CORS settings.
esbuild sets Access-Control-Allow-Origin: *
header to all requests, including the SSE connection, which allows any websites to send any request to the development server and read the response.
https://github.com/evanw/esbuild/blob/df815ac27b84f8b34374c9182a93c94718f8a630/pkg/api/serve_other.go#L121 https://github.com/evanw/esbuild/blob/df815ac27b84f8b34374c9182a93c94718f8a630/pkg/api/serve_other.go#L363
Attack scenario:
http://malicious.example.com
).fetch('http://127.0.0.1:8000/main.js')
request by JS in that malicious web page. This request is normally blocked by same-origin policy, but that's not the case for the reasons above.http://127.0.0.1:8000/main.js
.In this scenario, I assumed that the attacker knows the URL of the bundle output file name. But the attacker can also get that information by
/index.html
: normally you have a script tag here/assets
: it's common to have a assets
directory when you have JS files and CSS files in a different directory and the directory listing feature tells the attacker the list of files/esbuild
SSE endpoint: the SSE endpoint sends the URL path of the changed files when the file is changed (new EventSource('/esbuild').addEventListener('change', e => console.log(e.type, e.data))
)The scenario above fetches the compiled content, but if the victim has the source map option enabled, the attacker can also get the non-compiled content by fetching the source map file.
npm i
npm run watch
fetch('http://127.0.0.1:8000/app.js').then(r => r.text()).then(content => console.log(content))
in a different website's dev tools.Users using the serve feature may get the source code stolen by malicious websites.